# Supplementary Material: Clustering Paraphrases by Word Sense

Anne Cocos and Chris Callison-Burch Computer and Information Science Department, University of Pennsylvania

## 1 Overview

This document provides additional detail on our similarity metric calculation, clustering algorithm implementation, and CrowdCluster reference cluster development. We also provide full evaluation results across the entire range of our experiments, a selection of sense clusters output by our methods, and example content of our WordNet+ and CrowdCluster paraphrase sets.

# 2 Computing Similarity Metrics

Unless otherwise noted, we calculate all similarity metrics using PPDB 2.0 data (Pavlick et al., 2015).

## 2.1 PPDB 2.0 Score

The PPDB 2.0 Score is defined for every pair of words with a paraphrase relationship in PPDB, and in our data set takes values between 1.3 and 5.6. PPDB 2.0 does not provide a score for a word with itself, so we set  $PPDB_{2.0}Score(i, i)$ to be the maximum  $PPDB_{2.0}Score(i, j)$  such that *i* and *j* have the same stem. We assume the PPDB 2.0 Score for non-identical word pairs that are not paraphrases in PPDB is 0.

We define  $sim_{PPDB.cos}(i, j)$  as follows:

$$sim_{PPDB.cos}(i,j) = \frac{\sum_{i=1}^{v} S(i,v)S(j,v)}{\sqrt{\sum_{i=1}^{v} S(i,v)}\sqrt{\sum_{i=1}^{v} S(j,v)}}$$

where  $v \in V$  are words in the vocabulary, and S(i, j) is shorthand for PPDB2.0Score(i, j).

To calculate  $sim_{PPDB,JS}(i, j)$ , we must first estimate a probability distribution over paraphrases j for each query word i:

$$P_i(j) = \frac{S(i,j)}{\sum_{v} S(i,v)}$$

We can then calculate the Jensen-Shannon divergence between paraphrases i and j based on their probability distributions  $P_i$  and  $P_j$ :

$$JSD(P_i \parallel P_j) = \frac{1}{2}KL(P_i \parallel M) + \frac{1}{2}KL(P_j \parallel M)$$

where KL is Kullback-Liebler divergence and  $M = \frac{1}{2}(P_i + P_j)$ . We set  $sim_{PPDB.JS}(i, j) = JSD(P_i \parallel P_j)$ . Note that  $sim_{PPDB.JS}$  is symmetric.

## 2.2 Distributional Similarity

We rely on WORD2VEC (Mikolov et al., 2013) word embeddings to calculate our distributional similarity metric:

$$sim_{DISTRIB}(i,j) = \frac{V_i \cdot V_j}{\parallel V_i \parallel \parallel V_j \mid}$$

where  $V_i$  is the vector embedding for word i.

We obtain vector embeddings by downloading 300-dimensional pre-trained vectors from the *word2vec* authors.<sup>1</sup> There are some multi-word phrases and British words in our data set with no exact match in the downloaded vector set. For each British word we use the vector for its American equivalent, and for each unmatched multi-word phrase we take the mean of its individual word vectors as the phrase vector.

<sup>&</sup>lt;sup>1</sup>These vectors were trained on a Google News data set. Download link: https://code.google.com/p/word2vec/

### 2.3 Translations

We define a pairwise word similarity  $sim_{TRANS}(i, j)$  calculated using the foreign translations of *i* and *j* from bilingual aligned corpora:

$$sim_{TRANS}(i,j) = \frac{\sum p(f|i)p(f|j)}{\sqrt{\sum p(f|i)}\sqrt{\sum p(f|j)}}$$

f

where f are foreign words or phrases with which English words i or j are aligned, and p(f|i) gives the conditional probability that i translates to f.

In our work we use Spanish and Chinese foreign translations and probabilities drawn from the corpora used to generate the Multilingual PPDB (Ganitkevitch and Callison-Burch, 2014).

### 2.4 Entailments

PPDB 2.0 gives a predicted entailment relation between every pair of words in the database. Specifically, it provides a relation-specific entailment probability for each defined relation type (*Equivalent, Forward Entailment, Reverse Entailment, Exclusive*, and *Independent*). In our work we use just the *Independent* entailment probability.

Given a symmetric adjacency matrix W for paraphrase set P, we incorporate entailment information by simply multiplying each adjacency matrix entry  $w_{ij}$  by  $1 - p_{ind}(i, j)$ :

$$w_{ij} = \begin{cases} (1 - p_{ind}(i, j)) sim_D(i, j) & (i, j) \in \text{PPDB} \\ 0 & \text{otherwise} \end{cases}$$

# 3 Clustering Algorithm Implementation

#### 3.1 Overview

We use the general process outlined in Algorithm 1 to cluster paraphrases.

Prior to running clustering, we first consolidate the paraphrase set PP(q) for query term q. If two or more words in PP(q) share a stem, we collapse them into a single paraphrase that takes the properties of the collapsed word with the most PPDB links. If the resulting paraphrase set P has less than three paraphrases, we take a rule-based approach to clustering it: If there is only one paraphrase in P, or if there are two paraphrases in P that are linked in PPDB, we return a single cluster. Otherwise we return two clusters with one word each.

Algorithm 1 Clustering Process

- **Require:** Query word q, similarity method  $sim_S$ , distance method  $sim_D$ , boolean *entail*, clustering method *method*.
- 1: Retrieve paraphrase set PP(q) of length n from PPDB.
- 2:  $P \leftarrow \texttt{consolidate\_stemmed\_wordlist}(PP(q))$
- 3: n' = length(P)
- 4: if n' = 1 then
- 5: Set clustering  $C = \{\{p_0\}\}\$
- 6: if n' = 2 then
- 7: **if**  $(p_0, p_1) \in PPDB$  **then**
- 8: Set clustering  $C = \{\{p_0, p_1\}\}$
- 9: else

16:

- 10: Set clustering  $C = \{\{p_0\}, \{p_1\}\}$
- 11: if  $n' \geq 3$  then
- 12:  $W \leftarrow \texttt{get\_sim\_matrix}(P, sim_S)$
- 13:  $S, W \leftarrow \texttt{remove\_singletons}(W)$
- 14:  $D \leftarrow (1 \text{get\_sim\_matrix}(P, sim_D))$
- 15: **if** entail **then** 
  - $W \leftarrow W imes \texttt{get\_entail\_matrix}(P)$
- 17: **if** *method* =**spectral then**

18: 
$$C' \leftarrow \texttt{spectral\_cluster}(P, W)$$

- 19: **else if** *method* =hgfc
- 20:  $C' \leftarrow hgfc\_cluster(P, W)$
- 21:  $C \leftarrow \texttt{optimize\_silhouette}(C', D)$

```
22: C \leftarrow \texttt{expand\_solution}(C, P, S)
```

If the resulting paraphrase set P has length n'of three or more, we cluster it based on the specified method. First we calculate the  $n' \times n'$  adjacency matrix W using the procedures outlined in Section 2. If the resulting W has any *singleton* rows, i.e. paraphrases with 0 similarity to all other words in P, we remove the corresponding term(s) from P and add them to their own cluster in the final clustering solution. This is to prevent problems in spectral clustering resulting from such singleton rows.

Next, we calculate the distance matrix D used to optimize the number of clusters using the specified method. If we are using entailments, we execute pointwise multiplication on the adjacency matrix as outlined in Section 2.4. We then execute one of our clustering algorithms described in Sections 3.2 and 3.3. The output of each algorithm is a set of possible clusterings with differing granularity. We choose the optimal clustering based on maximizing the Silhouette Coefficient (Rousseeuw, 1987), with the input distance matrix D.

Finally, before returning the final clustering solution, we expand it to include the singleton clusters we removed earlier and the paraphrases consolidated by stem.

# 3.2 Hierarchical Graph Factorization Clustering

The Hierarchical Graph Factorization Clustering (HGFC) method was developed by Yu et al. (2006) to probabilistically partition data into hierarchical clusters that gradually merge finergrained clusters into coarser ones. Sun and Korhonen (2011) applied HGFC to the task of clustering verbs into Levin (1993)-style classes. We adopt Sun and Korhonen's implementation of HGFC for our experiments.

Using HGFC, we represent a paraphrase set  $P = \{p_i\}_{i=1}^n$  as an undirected graph G(P, E), where vertices correspond to paraphrases in P and edges  $E = \{(p_i, p_j)\}$  connect paraphrase pairs that appear in PPDB. We can represent our chosen similarity measure  $sim_S$  between word pairs in P by the nonnegative, symmetric adjacency matrix  $W = \{w_{ij}\}$  where the weight of each entry,  $w_{ij}$ , conveys the similarity for paraphrase pair  $sim_S(p_i, p_j)$ . We achieved our best results by normalizing the rows of W such that the L2 norm of each row is equal to 1.

The idea behind HGFC is that we can also estimate  $w_{ij}$  using the construction of a bipartite graph K(P, S), where one side contains paraphrase nodes  $p_i$  from G and the other consists of nodes from  $S = \{s_u\}_{u=1}^k$  corresponding to the latent senses. In this construction, no paraphrase pairs  $(p_i, p_j) \in P$  are directly connected, but we can estimate their similarity using hops over senses  $s_u \in S$ . Specifically, the mapping from W to S is done by the  $n \times k$  adjacency matrix B, where  $B_{iu}$  gives the weight between paraphrase  $p_i$  and sense  $s_u$  (Yu et al., 2005):

$$w_{ij}' = \sum_{u=1}^{k} \frac{b_{iu} b_{ju}}{\lambda_u} = \left(B\Lambda^{-1} B^T\right)_{ij} \qquad (1)$$

Here,  $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_k)$  and  $\lambda_u = \sum_{i=1}^n b_{iu}$ . If the sum of each row in *B* is 1, then intuitively  $b_{iu}$  corresponds to the likelihood that paraphrase  $p_i$  belongs to sense  $s_u$ . HGFC uses these likelihoods to produce a soft clustering from the paraphrases in *P* to the senses in *S* (Zhou et al., 2004).

HGFC uncovers B and  $\Lambda$  by decoupling them with  $H = B\Lambda^{-1}$  and minimizing  $\ell(W, H\Lambda T^T)$ , s.t.  $\sum_{i=1}^{n} h_{iu} = 1$ , given the distance function  $\ell(\cdot, \cdot)$  between matrices.

Using the divergence distance  $\ell(X, Y) = \sum_{ij} (x_{ij} \log \frac{x_{ij}}{y_{ij}} - x_{ij} + y_{ij})$ , Yu et al. (2006) showed that the following update equations are non-increasing:

$$\tilde{h}_{iu} \propto h_{iu} \sum_{j} \frac{w_{ij}}{(H\Lambda H^T)_{ij}} \lambda_u h_{ju}; \sum_{i} \tilde{h}_{iu} = 1 \quad (2)$$

$$\tilde{\lambda}_u \propto \lambda_u \sum_{ij} \frac{w_{ij}}{(H\Lambda H^T)_{ij}} h_{iu} h_{ju}; \sum_u \tilde{\lambda}_u = \sum_{ij} w_{ij}.$$
(3)

Finally, having minimized  $\ell(W, H\Lambda T^T)$ , we can calculate the affinity between senses:

$$\tilde{W}_{uv} = \sum_{i=1}^{n} \frac{b_{iu} b_{iv}}{d_i} = (B^T D^{-1} B)_{uv} \qquad (4)$$

where  $D = \text{diag}(d_1, \dots, d_n)$  and  $d_i = \sum_{u=1}^k b_{iu}$ .

HGFC works iteratively to create clusters of increasingly coarse granularity. In each round l, the previous round's graph  $\tilde{W}_{l-1}$  of size  $m_{l-1} \times m_{l-1}$  is clustered into  $m_1$  senses using equations 2 to 4. At each level l, we can recover the cluster assignment probabilities for the original  $p_i \in P$ from  $B_l$  as follows:

$$prob(s_u^{(l)}|p_i) = (D_1^{-1}B_1D_2^{-1}B_2D_3^{-1}B_3\dots D_l^{-1}B_l)_{iu}$$
(5)

We let the algorithm automatically discover the clustering tree structure by setting  $m_l$  equal to the number of non-empty clusters from round l-1 minus one.

**Algorithm 2** HGFC Algorithm (Yu et al. 2006)

**Require:** Paraphrase set P of size n, adjacency matrix W of size  $n \times n$ 

- 1:  $W_0 \leftarrow \texttt{normalize}(W)$
- 2: Build the graph  $G_0$  from  $W_0$ , and  $m_0 \leftarrow n$ 3:  $l \leftarrow 1$
- 4: Initialize cluster count  $c \leftarrow n$
- 5: while c > 1 do
- 6:  $m_l \leftarrow clustercount 1$
- 7: Factorize  $G_{l-1}$  to obtain bipartite graph  $K_l$  with the adjacency matrix  $B_l$  of size  $m_{l-1} \times m_l$  (eq. 2, 3)
- 8: Build graph  $G_l$  with adjacency matrix  $\tilde{W}_l = B_l^T D_l^{-1} B_l$ , where  $D_l$ 's diagonal entries are obtained by summation over  $B_l$ 's columns (eq. 4)
- 9: Compute the cluster assignment probabilities  $T_l = D_1^{-1} B_1 D_2^{-1} B_2 \dots D_l^{-1} B_l$  (eq. 5)
- 10: Set c equal to the number of non-empty clusters in T minus one.

Running the HGFC algorithm returns a set of clusterings of increasingly coarse granularity. For each cluster assignment probability matrix  $T_l$  we can recover the soft clustering assignment for each input paraphrase  $p_i$  using a threshold parameter  $\tau$ . We simply take the assignment for each  $p_i$  to be the set of senses with probability less than  $\tau$  away from the maximum probability for that  $p_i$ , i.e.  $\{s_u | abs(T_{iu}^{(l)} - max_v T_{iv}^{(l)}) \leq \tau\}$ When finding the optimal cluster granularity,

when finding the optimal cluster granularity, we find the round l whose clustering assignments maximize the Silhouette Coefficient.

#### 3.3 Spectral Clustering

The second clustering algorithm that we use is Self-Tuning Spectral Clustering (Zelnik-Manor and Perona, 2004)<sup>2</sup>. Whereas HGFC produces a hierarchical clustering, spectral clustering produces a flat clustering with k clusters, with kspecified at runtime. The Zelnik-Manor and Perona (2004)'s self-tuning method is based on Ng et al. (2001)'s spectral clustering algorithm.

The algorithm is 'self-tuning' in that it enables clustering of data that is distributed according to different scales. For each data point  $p_i$  (i.e. each row in W) input to the algorithm, it constructs a local scaling parameter  $\sigma_i$ :

$$\sigma_i = sim(p_i, p_K) \tag{6}$$

where  $p_K$  is the  $K^{th}$  nearest neighbor of point  $p_i$ . Like Zelnik and Perona, we use K = 7 in our experiments.

Using local  $\sigma_i$ , we can then calculate an updated affinity matrix  $\hat{A}$  based on similarities given in the input W as follows:

$$\hat{A}_{ij} = \begin{cases} \frac{w_{ij}}{\sigma_i \sigma_j} & i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(7)

The complete algorithm we use for spectral clustering is described in Algorithm 3.

To find the optimal number of clusters, we first find m, the number of eigenvectors of L with value equal to 1. We then perform spectral clustering on paraphrase set P with  $k \in [max(2,m), min(20,n)]$  and find the k which maximizes the Silhouette Coefficient.

## 4 Crowd clustering

We want reasonable sets of sense-clustered paraphrases against which to evaluate our automatic clustering method. Although WordNet synsets are a well-vetted standard, they are insufficient for the task by themselves because of their limited coverage. Using WordNet alone would only allow us to evaluate our method as applied to the 38% of paraphrases for our target word list in PPDB that intersect WordNet. So instead we combine crowdsourcing and manual review to construct a reasonable human-generated set of sense-clustered paraphrases.

Some of the paraphrase sets in our PPDB XXL dataset contain more than 200 phrases,

 $<sup>^{2}</sup>$ Zelnik and Perona also describe a method for automatically determining the number of clusters in their solution. We do not use this part of their algorithm because optimizing the Silhouette Coefficient gave better

results for our data.

**Algorithm 3** Spectral Clustering Algorithm (Ng et al. 2001, Zelnik-Manor and Perona 2004)

- **Require:** Paraphrase set P of size n, adjacency matrix W of size  $n \times n$ , number of clusters k
- 1: Compute the local scale  $\sigma_i$  for each paraphrase  $p_i \in P$  using Eq. 6
- 2: Form the locally scalled affinity matrix A, where  $\hat{A}_{ij}$  is defined according to Eq. 7
- 3: Define D to be a diagonal matrix with  $D_{ii} = \sum_{j=1}^{n} \hat{A}_{ij}$  and construct the normalized affinity matrix  $L = D^{-1/2} \hat{A} D^{-1/2}$ .
- 4: Find  $x_1, \ldots, x_k$ , the k largest eigenvectors of L, and form the matrix  $X = [x_1, \ldots, x_k] \in \mathbb{R}^{n \times k}$ .
- 5: Re-normalize the rows of X to have unit length yielding  $Y \in \mathbb{R}^{n \times K}$ .
- 6: Treat each row of Y as a point in  $\mathbb{R}^k$  and cluster via k-means.
- 7: Assign the original point  $p_i$  to cluster c if and only if the corresponding row i of the matrix Y was assigned to cluster c.

making it unreasonable to ask a single worker to cluster an entire paraphrase set in one sitting. Instead, we take an iterative approach to crowd clustering by asking individual workers to sort a handful of new paraphrases over multiple iterations. Along the way, as workers agree on the placement of words within sense clusters, we add them to a 'crowd-gold' standard. In each iteration, workers can see the most up-to-date crowd gold clustering solution and are asked to sort new, unclustered paraphrases within it.

#### 4.1 Iterative Clustering Methodology

#### 4.1.1 General overview

Each clustering iteration t includes a sort phase in which workers are presented with a list of m unsorted paraphrases  $U^t = \{u_1^t, u_2^t \dots u_m^t\}$ for a single target word w, and a partial sense clustering solution  $C^{t-1} = \{c_1^{t-1}, c_2^{t-1} \dots c_k^{t-1}\}$  as generated in previous iterations. The initial round is unseeded, with  $C^0 = \emptyset$ . Workers are asked to sort all unsorted words  $u_i^t$  by adding them to one or more existing clusters  $c_{i<k}^t$  or new clusters  $c_{j>k}^t$ . For each target word, n workers sort the same list  $U^t$  in each iteration. We add a word  $u_i^t$  to the crowd clustering solution  $C^t$  if at least  $\tau \times n$  workers agree on its placement, where  $\tau$  is a threshold parameter.

### 4.1.2 Consolidating Worker Results

When workers add unsorted words to an existing cluster  $c_{j\leq k}$ , it is easy to assess worker agreement; we can simply count the share of workers who add word  $u_i$  to cluster  $c_j$ . But when workers add words to a new cluster, we must do additional work to align the j's between workers.

For unsorted words added to new clusters, we consolidate worker placements in iteration t by creating a graph G with a node for each  $u_i \in U^t$  added by any worker to a new cluster  $c_{j>k}$ . We then add weighted edges between each pair of nodes  $u_i$  and  $u'_i$  in G by counting the number of workers who sorted  $u_i$  and  $u'_i$  together in some new cluster. Finally we remove edges with weight less than  $\tau \times n$  and take the resulting biconnected components as the set of newly added clusters  $C^t \setminus C^{t-1}$ .

For quality control, we introduce a 'bogus' word that is obviously not a paraphrase of any word in  $U^t$  in each round. We ask workers to identify the bogus word and place it in a trash bin. We ignore the results of workers who fail this quality control measure at least 75% of the time.

#### 4.1.3 Merge Phase

We find qualitatively that consolidating clusters based on biconnected components generates overlapping but incomplete clusters after several iterations. So we include a *merge* phase after every third clustering iteration that enables workers to merge clusters from  $C^{t-1}$  before sorting new words into  $C^t$ . As with the sorting phase, we merge clusters  $c_{t-1}$  and  $c'_{t-1}$  if at least  $\tau \times n$ workers agree that they should be merged.

#### 4.2 Final Cleanup

Using our method, the size of clusters is monotonically increasing each iteration. So before we use the final crowd-clustered data set, we manually review its contents and make corrections where necessary. The full set of reference clusters used in our experiments is given in Section 7.

# 4.3 User Interface

Our user interface (Figure 1) presents each worker with a 'grab bag' of unclustered words for a given target on the left, and a sorting area on the right. Workers are asked to sort all unclustered words by dragging each one into a bin in the sorting area that contains other words sharing the same sense of the target.

We set the maximum size of the grab bag to be 10 words. This is based on experimentation that showed worker clustering performance declined when the size of the grab bag was larger.

# 5 Full Results

Full results for all experiments are given in Tables 1 and 2. The results given in columns WordNet+ and CrowdClusters indicate the appropriate metric's weighted average across all query words for that set of reference clusters. The result for each query term is weighted by its number of reference classes.

# 6 Example Clusters

Further examples of the clusters output by our algorithms are given in Figure 2.

# 7 Reference Sense Clusters

Tables 3 and 4 provide reference clusters for 10 example query words from the WordNet+ and CrowdClusters data sets respectively.

In this HIT, we loosely define paraphrases as sets of words that mean approximately the same thing.

In the white box on the right is a set of paraphrases for the word *bug*, grouped by the sense of *bug* that they convey. Bins should contain groups of words that all mean approximately the same thing in some sense.

In the blue box at the left are a group of unsorted words. Your job is to finish the sorting task.

You can duplicate the words that belong in more than one bin using the 'Duplicate a Word' dropdown.

**Please note**: As a quality control measure, we have inserted one false paraphrase into the list of sortable words. Please place this false paraphrases and any other words unrelated to the target word *bug* in the red trash bin at the bottom right.

Click to show/hide an example.

|                                                                                                                | beetle insect<br>fly ant spider | germ virus | error glitch |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|------------|--------------|
| Duplicate a Word<br>beetle germ virus ant microbe<br>fly insect error bother glitch<br>spider trident bacteria | bacteria microbe                | bother     |              |
|                                                                                                                |                                 |            | trident      |

(a) Sorting user interface instructions to workers.

(b) Sorting user interface.



| Merge Selected | well-nigh nigh | almost most | closely about |
|----------------|----------------|-------------|---------------|
|                | closely near   |             |               |
|                |                |             |               |
|                |                |             |               |
|                |                |             |               |

(c) Merge user interface.

Figure 1: Amazon Mechanical Turk user interface for crowdsourcing reference clusters.

| SimMethod        | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|------------------|------------------|--------------|-----------|----------|---------------|
| PPDB2.0Score     | PPDB2.0Score     | False        | F-Score   | 0.3497   | 0.4571        |
|                  |                  |              | V-Measure | 0.3906   | 0.4731        |
|                  |                  | True         | F-Score   | 0.3504   | 0.4594        |
|                  |                  |              | V-Measure | 0.3946   | 0.4681        |
|                  | $sim_{PPDB.cos}$ | False        | F-Score   | 0.3627   | 0.4979        |
|                  |                  |              | V-Measure | 0.3947   | 0.4797        |
|                  |                  | True         | F-Score   | 0.3539   | 0.4897        |
|                  |                  |              | V-Measure | 0.3929   | 0.4395        |
|                  | $sim_{PPDB.js}$  | False        | F-Score   | 0.3667   | 0.4737        |
|                  | ·                |              | V-Measure | 0.3899   | 0.4346        |
|                  |                  | True         | F-Score   | 0.3550   | 0.4969        |
|                  |                  |              | V-Measure | 0.3896   | 0.4387        |
|                  | $sim_{DISTRIB}$  | False        | F-Score   | 0.3528   | 0.4893        |
|                  |                  |              | V-Measure | 0.3332   | 0.3755        |
|                  |                  | True         | F-Score   | 0.3587   | 0.5095        |
|                  |                  |              | V-Measure | 0.3375   | 0.3989        |
|                  | $sim_{TRANS}$    | False        | F-Score   | 0.3494   | 0.4336        |
|                  |                  |              | V-Measure | 0.3571   | 0.3413        |
|                  |                  | True         | F-Score   | 0.3562   | 0.4390        |
|                  |                  |              | V-Measure | 0.3654   | 0.3502        |
| $sim_{PPDB.cos}$ | PPDB2.0Score     | False        | F-Score   | 0.3213   | 0.5007        |
|                  |                  |              | V-Measure | 0.3256   | 0.3198        |
|                  |                  | True         | F-Score   | 0.3465   | 0.4634        |
|                  |                  |              | V-Measure | 0.3465   | 0.4280        |
|                  | $sim_{PPDB.cos}$ | False        | F-Score   | 0.2828   | 0.4336        |
|                  |                  |              | V-Measure | 0.4755   | 0.4569        |
|                  |                  | True         | F-Score   | 0.3280   | 0.4425        |
|                  |                  |              | V-Measure | 0.4548   | 0.4754        |
|                  | $sim_{PPDB.js}$  | False        | F-Score   | 0.3045   | 0.4165        |
|                  |                  |              | V-Measure | 0.4999   | 0.4622        |
|                  |                  | True         | F-Score   | 0.3350   | 0.4691        |
|                  |                  |              | V-Measure | 0.4187   | 0.4706        |
|                  | $sim_{DISTRIB}$  | False        | F-Score   | 0.2977   | 0.4772        |
|                  |                  |              | V-Measure | 0.3794   | 0.3270        |
|                  |                  | True         | F-Score   | 0.3381   | 0.4422        |
|                  |                  |              | V-Measure | 0.3662   | 0.3498        |
|                  | $sim_{TRANS}$    | False        | F-Score   | 0.3158   | 0.4102        |
|                  |                  |              | V-Measure | 0.3373   | 0.3083        |
|                  |                  | True         | F-Score   | 0.3276   | 0.4168        |
|                  |                  |              | V-Measure | 0.3642   | 0.3148        |
|                  |                  |              |           |          | Continued     |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SimMethod              | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------|-----------|----------|---------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sim <sub>PPDB.JS</sub> | PPDB2.0Score     | False        | F-Score   | 0.3222   | 0.4754        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.3045   | 0.3482        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3530   | 0.4570        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                  |              | V-Measure | 0.3703   | 0.4340        |
| V-Measure         0.4728         0.4799           F-Score         0.3357         0.4365           V-Measure         0.4459         0.4595           SimPPDB.js         False         F-Score         0.2952         0.3942           V-Measure         0.4659         0.4703         0.4151           F-Score         0.3341         0.4452         0.451           V-Measure         0.4369         0.4511         0.451           simDISTRIB         False         F-Score         0.3431         0.4452           V-Measure         0.3469         0.3535         0.371           True         F-Score         0.3435         0.4781           V-Measure         0.3143         0.4026         0.309           V-Measure         0.314         0.4026         0.4026           SimTRANS         False         F-Score         0.314         0.4026           V-Measure         0.3114         0.3651         0.3197           simDISTRIB         PPDB2.0Score         False         F-Score         0.3247         0.4191           V-Measure         0.5261         0.1822         0.4373         0.4373           V-Measure         0.5261         0.1822<                                                                               |                        | $sim_{PPDB.cos}$ | False        | F-Score   | 0.2839   | 0.4191        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4728   | 0.4799        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                  | True         | F-Score   | 0.3357   | 0.4365        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4457   | 0.4595        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | $sim_{PPDB.js}$  | False        | F-Score   | 0.2952   | 0.3942        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4659   | 0.4703        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3341   | 0.4452        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4391   | 0.4451        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | $sim_{DISTRIB}$  | False        | F-Score   | 0.3009   | 0.4811        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.3469   | 0.3535        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3435   | 0.4781        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.3563   | 0.3500        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | $sim_{TRANS}$    | False        | F-Score   | 0.3104   | 0.4026        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.3114   | 0.3651        |
| V-Measure         0.3535         0.3197 $sim_{DISTRIB}$ PPDB2.0Score         False         F-Score         0.2324         0.4476           V-Measure         0.5261         0.1822         0.1822           True         F-Score         0.3311         0.5005           V-Measure         0.4617         0.4697           sim_PPDB.cos         False         F-Score         0.2300         0.4373           V-Measure         0.5548         0.2467         0.4697           V-Measure         0.5548         0.2467         0.4697           Sim_PPDB.cos         False         F-Score         0.3098         0.4920           V-Measure         0.4724         0.4429         0.4429           sim_PPDB.js         False         F-Score         0.2476         0.4526           V-Measure         0.4370         0.2681         0.4847           V-Measure         0.4370         0.2681         0.4807           False         F-Score         0.2170         0.3925           V-Measure         0.4935         0.4807         0.4847           V-Measure         0.2972         0.4663         0.4063           V-Measure         0.2972 <t< td=""><td></td><td></td><td>True</td><td>F-Score</td><td>0.3247</td><td>0.4191</td></t<> |                        |                  | True         | F-Score   | 0.3247   | 0.4191        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.3535   | 0.3197        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $sim_{DISTRIB}$        | PPDB2.0Score     | False        | F-Score   | 0.2324   | 0.4476        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.5261   | 0.1822        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3311   | 0.5005        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4617   | 0.4697        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | $sim_{PPDB.cos}$ | False        | F-Score   | 0.2300   | 0.4373        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.5548   | 0.2467        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3098   | 0.4920        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4724   | 0.4429        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | $sim_{PPDB.js}$  | False        | F-Score   | 0.2476   | 0.4526        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4370   | 0.2681        |
| $\begin{array}{ccccc} & V-\text{Measure} & 0.4935 & 0.4807 \\ sim_{DISTRIB} & \text{False} & F-\text{Score} & 0.2170 & 0.3925 \\ & V-\text{Measure} & 0.5751 & 0.3977 \\ & & True & F-\text{Score} & 0.2972 & 0.4663 \\ & & V-\text{Measure} & 0.4905 & 0.3744 \\ & sim_{TRANS} & \text{False} & F-\text{Score} & 0.2430 & 0.4036 \\ & & V-\text{Measure} & 0.4942 & 0.3057 \\ & & True & F-\text{Score} & 0.2957 & 0.4144 \\ & & V-\text{Measure} & 0.4254 & 0.4056 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  | True         | F-Score   | 0.3179   | 0.4847        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4935   | 0.4807        |
| $\begin{array}{ccccc} V-\text{Measure} & 0.5751 & 0.3977 \\ True & F-Score & 0.2972 & 0.4663 \\ V-\text{Measure} & 0.4905 & 0.3744 \\ sim_{TRANS} & False & F-Score & 0.2430 & 0.4036 \\ V-\text{Measure} & 0.4942 & 0.3057 \\ True & F-Score & 0.2957 & 0.4144 \\ V-\text{Measure} & 0.4254 & 0.4056 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | $sim_{DISTRIB}$  | False        | F-Score   | 0.2170   | 0.3925        |
| $\begin{array}{cccccccc} {\rm True} & {\rm F-Score} & 0.2972 & 0.4663 \\ & {\rm V-Measure} & 0.4905 & 0.3744 \\ \\ sim_{TRANS} & {\rm False} & {\rm F-Score} & 0.2430 & 0.4036 \\ & {\rm V-Measure} & 0.4942 & 0.3057 \\ \\ & {\rm True} & {\rm F-Score} & 0.2957 & 0.4144 \\ & {\rm V-Measure} & 0.4254 & 0.4056 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                  |              | V-Measure | 0.5751   | 0.3977        |
| $\begin{array}{c ccccc} V-\text{Measure} & 0.4905 & 0.3744 \\ sim_{TRANS} & \text{False} & \text{F-Score} & 0.2430 & 0.4036 \\ V-\text{Measure} & 0.4942 & 0.3057 \\ \text{True} & \text{F-Score} & 0.2957 & 0.4144 \\ V-\text{Measure} & 0.4254 & 0.4056 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                  | True         | F-Score   | 0.2972   | 0.4663        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4905   | 0.3744        |
| V-Measure         0.4942         0.3057           True         F-Score         0.2957         0.4144           V-Measure         0.4254         0.4056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | $sim_{TRANS}$    | False        | F-Score   | 0.2430   | 0.4036        |
| True         F-Score         0.2957         0.4144           V-Measure         0.4254         0.4056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                  |              | V-Measure | 0.4942   | 0.3057        |
| V-Measure 0.4254 0.4056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                  | True         | F-Score   | 0.2957   | 0.4144        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                  |              | V-Measure | 0.4254   | 0.4056        |

| Table 1: H | GFC Clust | ering Resu | ılts (cont | (inued $)$ |
|------------|-----------|------------|------------|------------|
|------------|-----------|------------|------------|------------|

| SimMethod            | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|----------------------|------------------|--------------|-----------|----------|---------------|
| sim <sub>TRANS</sub> | PPDB2.0Score     | False        | F-Score   | 0.2943   | 0.4593        |
|                      |                  |              | V-Measure | 0.2271   | 0.1530        |
|                      |                  | True         | F-Score   | 0.3105   | 0.4587        |
|                      |                  |              | V-Measure | 0.3094   | 0.4566        |
|                      | $sim_{PPDB.cos}$ | False        | F-Score   | 0.2969   | 0.4663        |
|                      |                  |              | V-Measure | 0.2987   | 0.2300        |
|                      |                  | True         | F-Score   | 0.2923   | 0.4735        |
|                      |                  |              | V-Measure | 0.3925   | 0.4353        |
|                      | $sim_{PPDB.js}$  | False        | F-Score   | 0.3027   | 0.4581        |
|                      |                  |              | V-Measure | 0.2862   | 0.1976        |
|                      |                  | True         | F-Score   | 0.3001   | 0.4830        |
|                      |                  |              | V-Measure | 0.3563   | 0.4340        |
|                      | $sim_{DISTRIB}$  | False        | F-Score   | 0.3001   | 0.4617        |
|                      |                  |              | V-Measure | 0.2390   | 0.2267        |
|                      |                  | True         | F-Score   | 0.2996   | 0.4624        |
|                      |                  |              | V-Measure | 0.3011   | 0.3367        |
|                      | $sim_{TRANS}$    | False        | F-Score   | 0.2323   | 0.3781        |
|                      |                  |              | V-Measure | 0.4748   | 0.3106        |
|                      |                  | True         | F-Score   | 0.2620   | 0.3887        |
|                      |                  |              | V-Measure | 0.4095   | 0.3435        |

Table 1: HGFC Clustering Results (continued)

| SimMethod        | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|------------------|------------------|--------------|-----------|----------|---------------|
| PPDB2.0Score     | PPDB2.0Score     | False        | F-Score   | 0.3268   | 0.4304        |
|                  |                  |              | V-Measure | 0.5534   | 0.5046        |
|                  |                  | True         | F-Score   | 0.3292   | 0.4312        |
|                  |                  |              | V-Measure | 0.5497   | 0.5326        |
|                  | $sim_{PPDB.cos}$ | False        | F-Score   | 0.3454   | 0.4865        |
|                  |                  |              | V-Measure | 0.4698   | 0.4881        |
|                  |                  | True         | F-Score   | 0.3517   | 0.4856        |
|                  |                  |              | V-Measure | 0.4731   | 0.4983        |
|                  | $sim_{PPDB.js}$  | False        | F-Score   | 0.3462   | 0.4858        |
|                  | -                |              | V-Measure | 0.4556   | 0.4886        |
|                  |                  | True         | F-Score   | 0.3510   | 0.4837        |
|                  |                  |              | V-Measure | 0.4652   | 0.4946        |
|                  | $sim_{DISTRIB}$  | False        | F-Score   | 0.3494   | 0.5067        |
|                  |                  |              | V-Measure | 0.4452   | 0.4796        |
|                  |                  | True         | F-Score   | 0.3570   | 0.5093        |
|                  |                  |              | V-Measure | 0.4513   | 0.4812        |
|                  | $sim_{TRANS}$    | False        | F-Score   | 0.3231   | 0.4279        |
|                  |                  |              | V-Measure | 0.4240   | 0.4287        |
|                  |                  | True         | F-Score   | 0.3274   | 0.4527        |
|                  |                  |              | V-Measure | 0.4330   | 0.4330        |
| $sim_{PPDB.cos}$ | PPDB2.0Score     | False        | F-Score   | 0.3430   | 0.4888        |
|                  |                  |              | V-Measure | 0.4823   | 0.4535        |
|                  |                  | True         | F-Score   | 0.3317   | 0.4526        |
|                  |                  |              | V-Measure | 0.5290   | 0.4803        |
|                  | $sim_{PPDB.cos}$ | False        | F-Score   | 0.3175   | 0.4166        |
|                  |                  |              | V-Measure | 0.5594   | 0.5244        |
|                  |                  | True         | F-Score   | 0.3396   | 0.4635        |
|                  |                  |              | V-Measure | 0.5019   | 0.4426        |
|                  | $sim_{PPDB.js}$  | False        | F-Score   | 0.3176   | 0.4115        |
|                  |                  |              | V-Measure | 0.5354   | 0.5053        |
|                  |                  | True         | F-Score   | 0.3357   | 0.4660        |
|                  |                  |              | V-Measure | 0.4793   | 0.4265        |
|                  | $sim_{DISTRIB}$  | False        | F-Score   | 0.3381   | 0.4639        |
|                  |                  |              | V-Measure | 0.4703   | 0.5018        |
|                  |                  | True         | F-Score   | 0.3476   | 0.4811        |
|                  |                  |              | V-Measure | 0.4224   | 0.4115        |
|                  | $sim_{TRANS}$    | False        | F-Score   | 0.3204   | 0.4940        |
|                  |                  |              | V-Measure | 0.4069   | 0.3706        |
|                  |                  | True         | F-Score   | 0.3234   | 0.4437        |
|                  |                  |              | V-Measure | 0.4089   | 0.3371        |
|                  |                  |              |           |          | Continued     |

| Table 2: | Spectral | Clustering | Results |
|----------|----------|------------|---------|
|----------|----------|------------|---------|

| SimMethod              | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|------------------------|------------------|--------------|-----------|----------|---------------|
| sim <sub>PPDB.JS</sub> | PPDB2.0Score     | False        | F-Score   | 0.3389   | 0.4875        |
|                        |                  |              | V-Measure | 0.4627   | 0.4560        |
|                        |                  | True         | F-Score   | 0.3252   | 0.4385        |
|                        |                  |              | V-Measure | 0.5206   | 0.4753        |
|                        | $sim_{PPDB.cos}$ | False        | F-Score   | 0.3084   | 0.4109        |
|                        |                  |              | V-Measure | 0.5442   | 0.5247        |
|                        |                  | True         | F-Score   | 0.3327   | 0.4740        |
|                        |                  |              | V-Measure | 0.4993   | 0.4509        |
|                        | $sim_{PPDB.js}$  | False        | F-Score   | 0.3035   | 0.4003        |
|                        | ·                |              | V-Measure | 0.5233   | 0.4947        |
|                        |                  | True         | F-Score   | 0.3327   | 0.4679        |
|                        |                  |              | V-Measure | 0.4702   | 0.4423        |
|                        | $sim_{DISTRIB}$  | False        | F-Score   | 0.3285   | 0.4701        |
|                        |                  |              | V-Measure | 0.4581   | 0.4905        |
|                        |                  | True         | F-Score   | 0.3412   | 0.4885        |
|                        |                  |              | V-Measure | 0.4321   | 0.4065        |
|                        | $sim_{TRANS}$    | False        | F-Score   | 0.3095   | 0.4786        |
|                        |                  |              | V-Measure | 0.3968   | 0.3385        |
|                        |                  | True         | F-Score   | 0.3130   | 0.4550        |
|                        |                  |              | V-Measure | 0.3955   | 0.3418        |
| $sim_{DISTRIB}$        | PPDB2.0Score     | False        | F-Score   | 0.3182   | 0.5105        |
|                        |                  |              | V-Measure | 0.4113   | 0.4587        |
|                        |                  | True         | F-Score   | 0.3150   | 0.4454        |
|                        |                  |              | V-Measure | 0.5241   | 0.4815        |
|                        | $sim_{PPDB.cos}$ | False        | F-Score   | 0.3160   | 0.4436        |
|                        |                  |              | V-Measure | 0.4805   | 0.5080        |
|                        |                  | True         | F-Score   | 0.3436   | 0.4707        |
|                        |                  |              | V-Measure | 0.4770   | 0.4574        |
|                        | $sim_{PPDB.js}$  | False        | F-Score   | 0.3124   | 0.4658        |
|                        |                  |              | V-Measure | 0.4547   | 0.5086        |
|                        |                  | True         | F-Score   | 0.3472   | 0.4761        |
|                        |                  |              | V-Measure | 0.4646   | 0.4313        |
|                        | $sim_{DISTRIB}$  | False        | F-Score   | 0.2813   | 0.4244        |
|                        |                  |              | V-Measure | 0.5137   | 0.5341        |
|                        |                  | True         | F-Score   | 0.3367   | 0.4700        |
|                        |                  |              | V-Measure | 0.4637   | 0.4465        |
|                        | $sim_{TRANS}$    | False        | F-Score   | 0.2984   | 0.4876        |
|                        |                  |              | V-Measure | 0.3728   | 0.3685        |
|                        |                  | True         | F-Score   | 0.3173   | 0.4501        |
|                        |                  |              | V-Measure | 0.3876   | 0.3531        |
|                        |                  |              |           |          | Continued     |

| Table 2: | Spectral | Clustering  | Results   | (continued)   |
|----------|----------|-------------|-----------|---------------|
| 10.010   | Spectral | 01000000000 | 1000 0100 | (00110111404) |

| SimMethod            | Choose K Method  | Entailments? | Metric    | WordNet+ | CrowdClusters |
|----------------------|------------------|--------------|-----------|----------|---------------|
| sim <sub>TRANS</sub> | PPDB2.0Score     | False        | F-Score   | 0.2706   | 0.4461        |
|                      |                  |              | V-Measure | 0.4154   | 0.2677        |
|                      |                  | True         | F-Score   | 0.2617   | 0.4029        |
|                      |                  |              | V-Measure | 0.5202   | 0.4749        |
|                      | $sim_{PPDB.cos}$ | False        | F-Score   | 0.2636   | 0.4379        |
|                      |                  |              | V-Measure | 0.4629   | 0.3650        |
|                      |                  | True         | F-Score   | 0.2674   | 0.4231        |
|                      |                  |              | V-Measure | 0.5107   | 0.4268        |
|                      | $sim_{PPDB.js}$  | False        | F-Score   | 0.2647   | 0.4417        |
|                      |                  |              | V-Measure | 0.4416   | 0.3655        |
|                      |                  | True         | F-Score   | 0.2667   | 0.4242        |
|                      |                  |              | V-Measure | 0.5106   | 0.4250        |
|                      | $sim_{DISTRIB}$  | False        | F-Score   | 0.2652   | 0.4562        |
|                      |                  |              | V-Measure | 0.4291   | 0.3655        |
|                      |                  | True         | F-Score   | 0.2640   | 0.4476        |
|                      |                  |              | V-Measure | 0.5158   | 0.4111        |
|                      | $sim_{TRANS}$    | False        | F-Score   | 0.2601   | 0.4441        |
|                      |                  |              | V-Measure | 0.4180   | 0.3240        |
|                      |                  | True         | F-Score   | 0.2584   | 0.3850        |
|                      |                  |              | V-Measure | 0.5131   | 0.4079        |

 Table 2: Spectral Clustering Results (continued)



Figure 2: Results of clusters output by our HGFC and Spectral Clustering methods.

Table 3: WordNet+ Reference Sense Cluster Examples

| Query Term  | Sense Clusters                                                                |
|-------------|-------------------------------------------------------------------------------|
| film (n)    | $c_0$ : wrap, sheet, wrapping                                                 |
|             | $c_1$ : flick, picture, telefilm, show, movie, feature, production,           |
|             | documentary                                                                   |
|             | $c_2$ : episode, sequence, roll, footage, reel, negative, microfilm           |
|             | $c_3$ : cinema                                                                |
| touch $(v)$ | $c_0$ : strike, engage, hit, press, feel, handle                              |
|             | $c_1$ : handle, deal, care                                                    |
|             | $c_2$ : strike, affect, move, stir, get                                       |
|             | $c_3$ : be, reach                                                             |
|             | $c_4$ : allude, suggest                                                       |
|             | $c_5$ : receive, take, have                                                   |
|             | $c_6$ : focus on, relate, pertain, regard, concern, involve, apply, affect,   |
|             | hold, refer                                                                   |
|             | $c_7$ : disturb, modify, violate, change, alter                               |
|             | $c_8$ : contact, stick, rub, meet, ring, cover                                |
|             | $c_9$ : impact, hit, influence, bother, modify, alter, treat, strike, affect, |
|             | stimulate, change                                                             |
|             | Continued                                                                     |

| Query Term     | Sense Clusters                                                                             |
|----------------|--------------------------------------------------------------------------------------------|
| soil (n)       | $c_0$ : silt, dirt, subsoil, mud, sand, clay, earth, ground                                |
|                | $c_1$ : territory                                                                          |
|                | $c_2$ : farmland, land, sod, bottom, turf, ground, tillage                                 |
|                | $c_3$ : filth, dirt                                                                        |
| treat $(v)$    | $c_0$ : feed, provide, cater                                                               |
|                | $c_1$ : analyze, relieve, analyse, remedy, administer, medicate, nurse, care               |
|                | for, correct, manipulate, operate                                                          |
|                | $c_2$ : touch, touch on, run, refine, process, affect, digest                              |
|                | $c_3$ : react, respond                                                                     |
|                | $c_4$ : handle, deal, cover, broach, initiate, address, talk about, discuss                |
|                | $c_5$ : present, give                                                                      |
|                | $c_6$ : criminalize, interact, abuse, handle, nurse                                        |
| severely $(r)$ | $c_0$ : badly, seriously, gravely                                                          |
|                | $c_1$ : hard                                                                               |
|                | $c_2$ : sternly                                                                            |
| dark(n)        | $c_0$ : nighttime, night                                                                   |
|                | $c_1$ : shadow, darkness                                                                   |
|                | $c_2$ : blackness, black, darkness, night                                                  |
|                | $c_3$ : darkness                                                                           |
|                | $c_4$ : darkness                                                                           |
| open (a)       | $c_0$ : exposed                                                                            |
|                | $c_1$ : opened                                                                             |
|                | $c_2$ : receptive                                                                          |
|                | c <sub>3</sub> : candid                                                                    |
|                | $c_4$ : loose                                                                              |
|                | $c_5$ : subject, capable                                                                   |
|                | $c_6$ : clear                                                                              |
|                | c7: unresolved, undecided                                                                  |
| 1 ()           | $c_8$ : overt                                                                              |
| charge (v)     | $c_0$ : require, command, burden                                                           |
|                | c <sub>1</sub> : blame, indict, accuse                                                     |
|                | c2: Shoot, rush                                                                            |
|                | c <sub>3</sub> : entrust, check                                                            |
|                | c4: turn on                                                                                |
|                | c5: take, difect                                                                           |
|                | <i>c</i> <sub>6</sub> : appoint, authorize, nominate, create, delegate, designate, assign, |
|                | make                                                                                       |
|                | co: provido, rochargo                                                                      |
|                | cs: change                                                                                 |
|                | cy. change<br>cho: transfer send                                                           |
|                | c <sub>10</sub> . transfer, send                                                           |
|                |                                                                                            |
|                | c12. pay                                                                                   |
|                | cl3. burdon, change                                                                        |

 Table 3: WordNet+ Reference Sense Cluster Examples (continued)

 $Continued\dots$ 

| Query Term   | Sense Clusters                                                              |
|--------------|-----------------------------------------------------------------------------|
|              | $c_{14}$ : blame, ascribe, impute, assign, attribute                        |
|              | $c_{15}$ : rush                                                             |
|              | $c_{16}$ : lodge, accuse, file                                              |
|              | $c_{17}$ : instruct                                                         |
|              | $c_{18}$ : claim, tax, complain                                             |
|              | $c_{19}$ : debit                                                            |
|              | $c_{20}$ : assess, account, impose, calculate, invoice, bill, levy          |
| board (n)    | $c_0$ : plank                                                               |
|              | $c_1$ : table                                                               |
|              | $c_2$ : card                                                                |
|              | $c_3$ : commission, directorate, committee                                  |
|              | $c_4$ : sheet, snowboard, skateboard, surfboard, scoreboard                 |
|              | $c_5$ : table                                                               |
|              | $c_6$ : surface                                                             |
| function (n) | $c_7$ : display                                                             |
|              | $c_8$ : dashboard, panel                                                    |
|              | $c_0$ : relation                                                            |
|              | $c_1$ : ceremony, affair, occasion, party, celebration                      |
|              | $c_2$ : purpose, use, role, usefulness, utility                             |
|              | $c_3$ : procedure                                                           |
|              | $c_4$ : duty, capacity, office, part, place, portfolio, position, role, hat |

 Table 3: WordNet+ Reference Sense Cluster Examples (continued)

| Query Term                | Sense Clusters                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------|
| post (n)                  | $c_0$ : positions, job, occupations, position                                               |
|                           | $c_1$ : posting, outpost                                                                    |
|                           | $c_2$ : poste, postal                                                                       |
| extended (a)              | $c_0$ : extension, extend, expanding, expanded, extending, enlarged,                        |
|                           | stretched, extensive, expand, increased                                                     |
|                           | $c_1$ : better, enhanced                                                                    |
|                           | $c_2$ : extending, protracted, stretched, prolonged                                         |
| let $(v)$                 | $c_0$ : continued, remained, retained, had                                                  |
|                           | $c_1$ : derived, prepared                                                                   |
|                           | $c_2$ : 'm leaving, headed, get going, got to go now, going to do, leaving,                 |
|                           | leave, be used, got to go                                                                   |
|                           | $c_3$ : shown, saw, showed, demonstrated                                                    |
|                           | $c_4$ : rented, afforded, hired, rent, rented out, owned                                    |
|                           | $c_5$ : dropped, declined                                                                   |
|                           | $c_6$ : torgot, torgotten                                                                   |
| alaan (m)                 | c7: helped, provided, added, included, offered, gave, awarded                               |
| $\operatorname{clean}(v)$ | $c_0$ : clean-up, cleaning, clean $c_0$ , s clean, get cleaned up, cleansing,               |
|                           | c: given up dropped out                                                                     |
|                           | $c_2$ : is true notable drinkable is healthy is safe                                        |
| so(r)                     | co: then now then well then so then                                                         |
| 50 (1)                    | ci: ves                                                                                     |
|                           | <i>c</i> <sub>2</sub> : accordingly, so therefore, therefore, thereby, hence, consequently, |
|                           | thus                                                                                        |
|                           | $c_3$ : so too, as well, too                                                                |
|                           | $c_4$ : very                                                                                |
|                           | $c_5$ : even                                                                                |
| pull (v)                  | $c_0$ : been fired, start shooting, shot, keep firing, been shot, get shot                  |
|                           | $c_1$ : get laid, lay                                                                       |
|                           | $c_2$ : conferred, earned                                                                   |
|                           | $c_3$ : 'm coming over, comes up, 's happening, is arriving, coming through,                |
|                           | shows up, comes in, 'm coming in, be drawn, is coming, is on his way,                       |
|                           | 'm coming up, 'm coming, coming in, 're coming, is happening, coming                        |
|                           | up, 's coming, comes along, 's coming in, 's coming up                                      |
|                           | $c_4$ : be accomplished, be undertaken, can be done, should be done, supposed               |
|                           | to do, be achieved                                                                          |
|                           | $c_5$ : learnt, derived, be learned, interpreted, been learned, be derived, be              |
|                           | learned                                                                                     |
|                           | c <sub>6</sub> . Is taken, gone, took, drew, can be drawn, drawn, is extracted, are         |
|                           | withdraw are taken got                                                                      |
| charge (n)                | $c_0$ : accusation vs. allegation allegations indictment prosecution                        |
| charge (II)               | c <sub>1</sub> : taxa charged fee charging surcharge                                        |
|                           | c <sub>2</sub> : encumbrances, responsibility, burden                                       |
|                           | Continued                                                                                   |

| Query Term                       | Sense Clusters                                                                     |
|----------------------------------|------------------------------------------------------------------------------------|
|                                  | c <sub>3</sub> : capita                                                            |
|                                  | $c_4$ : matters                                                                    |
| shot $(n)$                       | $c_0$ : shoot, gunshot, shootings, shooting                                        |
|                                  | $c_1$ : shooter                                                                    |
| saint (n)                        | $c_0$ : sainte, st., santa                                                         |
| $\operatorname{run}(\mathbf{v})$ | $c_0$ : been organized, enhanced, being managed, organized, acted, structured,     |
|                                  | designated, owned, conducted, administrated, organised, served, worked             |
|                                  | $c_1$ : am leaving, 're going away, 'm going now, be going, checking out, was      |
|                                  | going, is going, are going, 'm running                                             |
|                                  | $c_2$ : are complete, finished, executed, planned, exhausted, bound, can be        |
|                                  | done                                                                               |
|                                  | $c_3$ : be pursued, being pursued                                                  |
|                                  | c <sub>4</sub> : commenced, opened, initiated, championed, introduced, circulated, |
|                                  | decreed                                                                            |
|                                  | $c_5$ : doing, be performed, functioning, worked, operates                         |
|                                  | c <sub>6</sub> : run off                                                           |

 Table 4: CrowdCluster Reference Sense Cluster Examples (continued)

 Term
 Sense Clusters

# References

- Juri Ganitkevitch and Chris Callison-Burch. 2014. The multilingual paraphrase database. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, pages 4276–4283.
- Beth Levin. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. In *Proceedings of NIPS*.
- Andrew Ng, Michael Jordan, and Y. Weiss. 2001. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems.
- Ellie Pavlick, Johan Bos, Malvina Nissim, Charley Beller, Benjamin Van Durme, and Chris Callison-Burch. 2015. PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL 2015).
- Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*, 20:53–65.
- Lin Sun and Anna Korhonen. 2011. Hierarchical verb clustering using graph factorization. In *Pro*ceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1023–1033. Association for Computational Linguistics.
- Kai Yu, Shipeng Yu, and Volker Tresp. 2005. Soft clustering on graphs. In Advances in neural information processing systems, pages 1553–1560.
- Lihi Zelnik-Manor and Pietro Perona. 2004. Selftuning spectral clustering. In Advances in neural information processing systems, pages 1601–1608.
- Dengyong Zhou, Thomas Hofmann, and Bernhard Schölkopf. 2004. Semi-supervised learning on directed graphs. In Advances in neural information processing systems, pages 1633–1640.