
Supplementary Material:
Clustering Paraphrases by Word Sense

Anne Cocos and Chris Callison-Burch
Computer and Information Science Department, University of Pennsylvania

1 Overview

This document provides additional detail on
our similarity metric calculation, clustering al-
gorithm implementation, and CrowdCluster ref-
erence cluster development. We also provide full
evaluation results across the entire range of our
experiments, a selection of sense clusters out-
put by our methods, and example content of our
WordNet+ and CrowdCluster paraphrase sets.

2 Computing Similarity Metrics

Unless otherwise noted, we calculate all similar-
ity metrics using PPDB 2.0 data (Pavlick et al.,
2015).

2.1 PPDB 2.0 Score

The PPDB 2.0 Score is defined for every pair of
words with a paraphrase relationship in PPDB,
and in our data set takes values between 1.3 and
5.6. PPDB 2.0 does not provide a score for a
word with itself, so we set PPDB2.0Score(i, i)
to be the maximum PPDB2.0Score(i, j) such
that i and j have the same stem. We assume
the PPDB 2.0 Score for non-identical word pairs
that are not paraphrases in PPDB is 0.

We define simPPDB.cos(i, j) as follows:

simPPDB.cos(i, j) =

v∑
S(i, v)S(j, v)√

v∑
S(i, v)

√
v∑
S(j, v)

where v ∈ V are words in the vocabulary, and
S(i, j) is shorthand for PPDB2.0Score(i, j).

To calculate simPPDB.JS(i, j), we must first
estimate a probability distribution over para-
phrases j for each query word i:

Pi(j) =
S(i, j)
v∑
S(i, v)

We can then calculate the Jensen-Shannon di-
vergence between paraphrases i and j based on
their probability distributions Pi and Pj :

JSD(Pi ‖ Pj) =
1

2
KL(Pi ‖M)+

1

2
KL(Pj ‖M)

where KL is Kullback-Liebler divergence and
M = 1

2(Pi + Pj). We set simPPDB.JS(i, j) =
JSD(Pi ‖ Pj). Note that simPPDB.JS is sym-
metric.

2.2 Distributional Similarity

We rely on word2vec (Mikolov et al., 2013)
word embeddings to calculate our distributional
similarity metric:

simDISTRIB(i, j) =
Vi · Vj

‖ Vi ‖‖ Vj ‖

where Vi is the vector embedding for word i.

We obtain vector embeddings by download-
ing 300-dimensional pre-trained vectors from the
word2vec authors.1 There are some multi-word
phrases and British words in our data set with
no exact match in the downloaded vector set.
For each British word we use the vector for its
American equivalent, and for each unmatched
multi-word phrase we take the mean of its indi-
vidual word vectors as the phrase vector.

1These vectors were trained on a
Google News data set. Download link:
https://code.google.com/p/word2vec/

2.3 Translations

We define a pairwise word similarity
simTRANS(i, j) calculated using the for-
eign translations of i and j from bilingual
aligned corpora:

simTRANS(i, j) =

f∑
p(f |i)p(f |j)√

f∑
p(f |i)

√
f∑
p(f |j)

where f are foreign words or phrases with which
English words i or j are aligned, and p(f |i) gives
the conditional probability that i translates to
f .

In our work we use Spanish and Chinese for-
eign translations and probabilities drawn from
the corpora used to generate the Multilingual
PPDB (Ganitkevitch and Callison-Burch, 2014).

2.4 Entailments

PPDB 2.0 gives a predicted entailment relation
between every pair of words in the database.
Specifically, it provides a relation-specific entail-
ment probability for each defined relation type
(Equivalent, Forward Entailment, Reverse En-
tailment, Exclusive, and Independent). In our
work we use just the Independent entailment
probability.

Given a symmetric adjacency matrix W for
paraphrase set P , we incorporate entailment in-
formation by simply multiplying each adjacency
matrix entry wij by 1− pind(i, j):

wij =

{
(1− pind(i, j))simD(i, j) (i, j) ∈ PPDB

0 otherwise

3 Clustering Algorithm
Implementation

3.1 Overview

We use the general process outlined in Algo-
rithm 1 to cluster paraphrases.

Prior to running clustering, we first consoli-
date the paraphrase set PP (q) for query term q.
If two or more words in PP (q) share a stem, we
collapse them into a single paraphrase that takes

the properties of the collapsed word with the
most PPDB links. If the resulting paraphrase
set P has less than three paraphrases, we take
a rule-based approach to clustering it: If there
is only one paraphrase in P , or if there are two
paraphrases in P that are linked in PPDB, we
return a single cluster. Otherwise we return two
clusters with one word each.

Algorithm 1 Clustering Process

Require: Query word q, similarity method
simS , distance method simD, boolean
entail, clustering method method.

1: Retrieve paraphrase set PP (q) of length n
from PPDB.

2: P ←consolidate stemmed wordlist(PP (q))
3: n′ = length(P)
4: if n′ = 1 then
5: Set clustering C = {{p0}}
6: if n′ = 2 then
7: if (p0, p1) ∈ PPDB then
8: Set clustering C = {{p0, p1}}
9: else

10: Set clustering C = {{p0}, {p1}}
11: if n′ ≥ 3 then
12: W ←get sim matrix(P, simS)
13: S,W ←remove singletons(W)
14: D ← (1−get sim matrix(P, simD))
15: if entail then
16: W ←W×get entail matrix(P)

17: if method =spectral then
18: C ′ ←spectral cluster(P,W)
19: else if method =hgfc

20: C ′ ←hgfc cluster(P,W)

21: C ←optimize silhouette(C ′, D)

22: C ←expand solution(C,P, S)

If the resulting paraphrase set P has length n′

of three or more, we cluster it based on the spec-
ified method. First we calculate the n′ × n′ ad-
jacency matrix W using the procedures outlined
in Section 2. If the resulting W has any single-
ton rows, i.e. paraphrases with 0 similarity to
all other words in P , we remove the correspond-
ing term(s) from P and add them to their own
cluster in the final clustering solution. This is to
prevent problems in spectral clustering resulting

from such singleton rows.

Next, we calculate the distance matrix D used
to optimize the number of clusters using the
specified method. If we are using entailments,
we execute pointwise multiplication on the ad-
jacency matrix as outlined in Section 2.4. We
then execute one of our clustering algorithms
described in Sections 3.2 and 3.3. The output
of each algorithm is a set of possible cluster-
ings with differing granularity. We choose the
optimal clustering based on maximizing the Sil-
houette Coefficient (Rousseeuw, 1987), with the
input distance matrix D.

Finally, before returning the final clustering
solution, we expand it to include the singleton
clusters we removed earlier and the paraphrases
consolidated by stem.

3.2 Hierarchical Graph Factorization
Clustering

The Hierarchical Graph Factorization Cluster-
ing (HGFC) method was developed by Yu et
al. (2006) to probabilistically partition data into
hierarchical clusters that gradually merge finer-
grained clusters into coarser ones. Sun and Ko-
rhonen (2011) applied HGFC to the task of clus-
tering verbs into Levin (1993)-style classes. We
adopt Sun and Korhonen’s implementation of
HGFC for our experiments.

Using HGFC, we represent a paraphrase set
P = {pi}ni=1 as an undirected graph G(P,E),
where vertices correspond to paraphrases in P
and edges E = {(pi, pj)} connect paraphrase
pairs that appear in PPDB. We can represent
our chosen similarity measure simS between
word pairs in P by the nonnegative, symmetric
adjacency matrix W = {wij} where the weight
of each entry, wij , conveys the similarity for
paraphrase pair simS(pi, pj). We achieved our
best results by normalizing the rows of W such
that the L2 norm of each row is equal to 1.

The idea behind HGFC is that we can also es-
timate wij using the construction of a bipartite
graph K(P, S), where one side contains para-
phrase nodes pi from G and the other consists
of nodes from S = {su}ku=1 corresponding to
the latent senses. In this construction, no para-
phrase pairs (pi, pj) ∈ P are directly connected,

but we can estimate their similarity using hops
over senses su ∈ S. Specifically, the mapping
from W to S is done by the n × k adjacency
matrix B, where Biu gives the weight between
paraphrase pi and sense su (Yu et al., 2005):

w′ij =
k∑

u=1

biubju
λu

=
(
BΛ−1BT

)
ij

(1)

Here, Λ = diag(λ1, . . . , λk) and λu =
∑n

i=1 biu.
If the sum of each row in B is 1, then intu-
itively biu corresponds to the likelihood that
paraphrase pi belongs to sense su. HGFC uses
these likelihoods to produce a soft clustering
from the paraphrases in P to the senses in S
(Zhou et al., 2004).

HGFC uncovers B and Λ by decoupling them
with H = BΛ−1 and minimizing `(W,HΛT T),
s.t.

∑n
i=1 hiu = 1, given the distance function

`(·, ·) between matrices.
Using the divergence distance `(X,Y) =∑
ij(xijlog

xij
yij
− xij + yij), Yu et al. (2006)

showed that the following update equations are
non-increasing:

h̃iu ∝ hiu
∑
j

wij
(HΛHT)ij

λuhju;
∑
i

h̃iu = 1 (2)

λ̃u ∝ λu
∑
ij

wij
(HΛHT)ij

hiuhju;
∑
u

λ̃u =
∑
ij

wij .

(3)
Finally, having minimized `(W,HΛT T), we

can calculate the affinity between senses:

W̃uv =

n∑
i=1

biubiv
di

= (BTD−1B)uv (4)

where D = diag(d1, . . . , dn) and di =
∑k

u=1 biu.
HGFC works iteratively to create clusters of

increasingly coarse granularity. In each round l,
the previous round’s graph W̃l−1 of size ml−1 ×
ml−1 is clustered into m1 senses using equations
2 to 4. At each level l, we can recover the cluster
assignment probabilities for the original pi ∈ P
from Bl as follows:

prob(s(l)u |pi) = (D−11 B1D
−1
2 B2D

−1
3 B3 . . . D

−1
l Bl)iu

(5)

We let the algorithm automatically discover
the clustering tree structure by setting ml equal
to the number of non-empty clusters from round
l − 1 minus one.

Algorithm 2 HGFC Algorithm (Yu et al.
2006)

Require: Paraphrase set P of size n, adjacency
matrix W of size n× n

1: W0 ←normalize(W)
2: Build the graph G0 from W0, and m0 ← n
3: l← 1
4: Initialize cluster count c← n
5: while c > 1 do
6: ml ← clustercount− 1
7: Factorize Gl−1 to obtain bipartite graph
Kl with the adjacency matrix Bl of size
ml−1 ×ml (eq. 2, 3)

8: Build graph Gl with adjacency matrix
W̃l = BT

l D
−1
l Bl, where Dl’s diagonal en-

tries are obtained by summation over Bl’s
columns (eq. 4)

9: Compute the cluster assignment proba-
bilities Tl = D−11 B1D

−1
2 B2 . . . D

−1
l Bl (eq. 5)

10: Set c equal to the number of non-empty
clusters in T minus one.

Running the HGFC algorithm returns a set
of clusterings of increasingly coarse granularity.
For each cluster assignment probability matrix
Tl we can recover the soft clustering assignment
for each input paraphrase pi using a threshold
parameter τ . We simply take the assignment for
each pi to be the set of senses with probability
less than τ away from the maximum probability

for that pi, i.e. {su|abs(T (l)
iu −maxvT

(l)
iv) ≤ τ}

When finding the optimal cluster granularity,
we find the round l whose clustering assignments
maximize the Silhouette Coefficient.

3.3 Spectral Clustering

The second clustering algorithm that we use is
Self-Tuning Spectral Clustering (Zelnik-Manor
and Perona, 2004)2. Whereas HGFC produces

2Zelnik and Perona also describe a method for au-
tomatically determining the number of clusters in their
solution. We do not use this part of their algorithm be-
cause optimizing the Silhouette Coefficient gave better

a hierarchical clustering, spectral clustering pro-
duces a flat clustering with k clusters, with k
specified at runtime. The Zelnik-Manor and
Perona (2004)’s self-tuning method is based on
Ng et al. (2001)’s spectral clustering algorithm.

The algorithm is ’self-tuning’ in that it en-
ables clustering of data that is distributed ac-
cording to different scales. For each data point
pi (i.e. each row in W) input to the algorithm,
it constructs a local scaling parameter σi:

σi = sim(pi, pK) (6)

where pK is the Kth nearest neighbor of point
pi. Like Zelnik and Perona, we use K = 7 in our
experiments.

Using local σi, we can then calculate an up-
dated affinity matrix Â based on similarities
given in the input W as follows:

Âij =

{
wij

σiσj
i 6= j

0 otherwise
(7)

The complete algorithm we use for spectral
clustering is described in Algorithm 3.

To find the optimal number of clusters, we
first find m, the number of eigenvectors of L
with value equal to 1. We then perform spec-
tral clustering on paraphrase set P with k ∈
[max(2,m),min(20, n)] and find the k which
maximizes the Silhouette Coefficient.

4 Crowd clustering

We want reasonable sets of sense-clustered para-
phrases against which to evaluate our automatic
clustering method. Although WordNet synsets
are a well-vetted standard, they are insufficient
for the task by themselves because of their lim-
ited coverage. Using WordNet alone would only
allow us to evaluate our method as applied to
the 38% of paraphrases for our target word list
in PPDB that intersect WordNet. So instead
we combine crowdsourcing and manual review
to construct a reasonable human-generated set
of sense-clustered paraphrases.

Some of the paraphrase sets in our PPDB
XXL dataset contain more than 200 phrases,

results for our data.

Algorithm 3 Spectral Clustering Algorithm
(Ng et al. 2001, Zelnik-Manor and Perona 2004)

Require: Paraphrase set P of size n, adjacency
matrix W of size n × n, number of clusters
k

1: Compute the local scale σi for each para-
phrase pi ∈ P using Eq. 6

2: Form the locally scalled affinity matrix Â,
where Âij is defined according to Eq. 7

3: Define D to be a diagonal matrix with
Dii =

∑n
j=1 Âij and construct the normal-

ized affinity matrix L = D−1/2ÂD−1/2.
4: Find x1, . . . , xk, the k largest eigenvectors of
L, and form the matrix X = [x1, . . . , xk] ∈
Rn×k.

5: Re-normalize the rows of X to have unit
length yielding Y ∈ Rn×K .

6: Treat each row of Y as a point in Rk and
cluster via k-means.

7: Assign the original point pi to cluster c if
and only if the corresponding row i of the
matrix Y was assigned to cluster c.

making it unreasonable to ask a single worker
to cluster an entire paraphrase set in one sit-
ting. Instead, we take an iterative approach to
crowd clustering by asking individual workers to
sort a handful of new paraphrases over multiple
iterations. Along the way, as workers agree on
the placement of words within sense clusters, we
add them to a ’crowd-gold’ standard. In each
iteration, workers can see the most up-to-date
crowd gold clustering solution and are asked to
sort new, unclustered paraphrases within it.

4.1 Iterative Clustering Methodology

4.1.1 General overview

Each clustering iteration t includes a sort
phase in which workers are presented with a list
of m unsorted paraphrases U t = {ut1, ut2...utm}
for a single target word w, and a partial sense
clustering solution Ct−1 = {ct−11 , ct−12 ...ct−1k } as
generated in previous iterations. The initial
round is unseeded, with C0 = ∅. Workers are
asked to sort all unsorted words uti by adding
them to one or more existing clusters ctj≤k or

new clusters ctj>k. For each target word, n work-

ers sort the same list U t in each iteration. We
add a word uti to the crowd clustering solution
Ctif at least τ×n workers agree on its placement,
where τ is a threshold parameter.

4.1.2 Consolidating Worker Results

When workers add unsorted words to an exist-
ing cluster cj≤k, it is easy to assess worker agree-
ment; we can simply count the share of workers
who add word ui to cluster cj . But when work-
ers add words to a new cluster, we must do ad-
ditional work to align the j’s between workers.

For unsorted words added to new clusters, we
consolidate worker placements in iteration t by
creating a graph G with a node for each ui ∈ U t
added by any worker to a new cluster cj>k. We
then add weighted edges between each pair of
nodes ui and u′i in G by counting the num-
ber of workers who sorted ui and u′i together
in some new cluster. Finally we remove edges
with weight less than τ × n and take the result-
ing biconnected components as the set of newly
added clusters Ct \ Ct−1.

For quality control, we introduce a ’bogus’
word that is obviously not a paraphrase of any
word in U t in each round. We ask workers to
identify the bogus word and place it in a trash
bin. We ignore the results of workers who fail
this quality control measure at least 75% of the
time.

4.1.3 Merge Phase

We find qualitatively that consolidating clus-
ters based on biconnected components generates
overlapping but incomplete clusters after several
iterations. So we include a merge phase after ev-
ery third clustering iteration that enables work-
ers to merge clusters from Ct−1 before sorting
new words into Ct. As with the sorting phase,
we merge clusters ct−1 and c′t−1 if at least τ × n
workers agree that they should be merged.

4.2 Final Cleanup

Using our method, the size of clusters is mono-
tonically increasing each iteration. So before we
use the final crowd-clustered data set, we man-
ually review its contents and make corrections

where necessary. The full set of reference clus-
ters used in our experiments is given in Section
7.

4.3 User Interface

Our user interface (Figure 1) presents each
worker with a ’grab bag’ of unclustered words
for a given target on the left, and a sorting area
on the right. Workers are asked to sort all un-
clustered words by dragging each one into a bin
in the sorting area that contains other words
sharing the same sense of the target.

We set the maximum size of the grab bag to be
10 words. This is based on experimentation that
showed worker clustering performance declined
when the size of the grab bag was larger.

5 Full Results

Full results for all experiments are given in Ta-
bles 1 and 2. The results given in columns
WordNet+ and CrowdClusters indicate the
appropriate metric’s weighted average across all
query words for that set of reference clusters.
The result for each query term is weighted by
its number of reference classes.

6 Example Clusters

Further examples of the clusters output by our
algorithms are given in Figure 2.

7 Reference Sense Clusters

Tables 3 and 4 provide reference clusters for 10
example query words from the WordNet+ and
CrowdClusters data sets respectively.

In this HIT, we loosely define paraphrases as sets of words that mean approximately the same thing.

In the white box on the right is a set of paraphrases for the word bug, grouped by the sense of bug that they convey.
Bins should contain groups of words that all mean approximately the same thing in some sense.

In the blue box at the left are a group of unsorted words. Your job is to finish the sorting task.

You can duplicate the words that belong in more than one bin using the ‘Duplicate a Word’ dropdown.

Please note: As a quality control measure, we have inserted one false paraphrase into the list of sortable words.
Please place this false paraphrases and any other words unrelated to the target word bug in the red trash bin
at the bottom right.

Click to show/hide an example.

(a) Sorting user interface instructions to workers.

(b) Sorting user interface.

(c) Merge user interface.

Figure 1: Amazon Mechanical Turk user interface for crowdsourcing reference clusters.

Table 1: HGFC Clustering Results

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

PPDB2.0Score PPDB2.0Score False F-Score 0.3497 0.4571
V-Measure 0.3906 0.4731

True F-Score 0.3504 0.4594
V-Measure 0.3946 0.4681

simPPDB.cos False F-Score 0.3627 0.4979
V-Measure 0.3947 0.4797

True F-Score 0.3539 0.4897
V-Measure 0.3929 0.4395

simPPDB.js False F-Score 0.3667 0.4737
V-Measure 0.3899 0.4346

True F-Score 0.3550 0.4969
V-Measure 0.3896 0.4387

simDISTRIB False F-Score 0.3528 0.4893
V-Measure 0.3332 0.3755

True F-Score 0.3587 0.5095
V-Measure 0.3375 0.3989

simTRANS False F-Score 0.3494 0.4336
V-Measure 0.3571 0.3413

True F-Score 0.3562 0.4390
V-Measure 0.3654 0.3502

simPPDB.cos PPDB2.0Score False F-Score 0.3213 0.5007
V-Measure 0.3256 0.3198

True F-Score 0.3465 0.4634
V-Measure 0.3465 0.4280

simPPDB.cos False F-Score 0.2828 0.4336
V-Measure 0.4755 0.4569

True F-Score 0.3280 0.4425
V-Measure 0.4548 0.4754

simPPDB.js False F-Score 0.3045 0.4165
V-Measure 0.4999 0.4622

True F-Score 0.3350 0.4691
V-Measure 0.4187 0.4706

simDISTRIB False F-Score 0.2977 0.4772
V-Measure 0.3794 0.3270

True F-Score 0.3381 0.4422
V-Measure 0.3662 0.3498

simTRANS False F-Score 0.3158 0.4102
V-Measure 0.3373 0.3083

True F-Score 0.3276 0.4168
V-Measure 0.3642 0.3148

Continued. . .

Table 1: HGFC Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simPPDB.JS PPDB2.0Score False F-Score 0.3222 0.4754
V-Measure 0.3045 0.3482

True F-Score 0.3530 0.4570
V-Measure 0.3703 0.4340

simPPDB.cos False F-Score 0.2839 0.4191
V-Measure 0.4728 0.4799

True F-Score 0.3357 0.4365
V-Measure 0.4457 0.4595

simPPDB.js False F-Score 0.2952 0.3942
V-Measure 0.4659 0.4703

True F-Score 0.3341 0.4452
V-Measure 0.4391 0.4451

simDISTRIB False F-Score 0.3009 0.4811
V-Measure 0.3469 0.3535

True F-Score 0.3435 0.4781
V-Measure 0.3563 0.3500

simTRANS False F-Score 0.3104 0.4026
V-Measure 0.3114 0.3651

True F-Score 0.3247 0.4191
V-Measure 0.3535 0.3197

simDISTRIB PPDB2.0Score False F-Score 0.2324 0.4476
V-Measure 0.5261 0.1822

True F-Score 0.3311 0.5005
V-Measure 0.4617 0.4697

simPPDB.cos False F-Score 0.2300 0.4373
V-Measure 0.5548 0.2467

True F-Score 0.3098 0.4920
V-Measure 0.4724 0.4429

simPPDB.js False F-Score 0.2476 0.4526
V-Measure 0.4370 0.2681

True F-Score 0.3179 0.4847
V-Measure 0.4935 0.4807

simDISTRIB False F-Score 0.2170 0.3925
V-Measure 0.5751 0.3977

True F-Score 0.2972 0.4663
V-Measure 0.4905 0.3744

simTRANS False F-Score 0.2430 0.4036
V-Measure 0.4942 0.3057

True F-Score 0.2957 0.4144
V-Measure 0.4254 0.4056

Continued. . .

Table 1: HGFC Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simTRANS PPDB2.0Score False F-Score 0.2943 0.4593
V-Measure 0.2271 0.1530

True F-Score 0.3105 0.4587
V-Measure 0.3094 0.4566

simPPDB.cos False F-Score 0.2969 0.4663
V-Measure 0.2987 0.2300

True F-Score 0.2923 0.4735
V-Measure 0.3925 0.4353

simPPDB.js False F-Score 0.3027 0.4581
V-Measure 0.2862 0.1976

True F-Score 0.3001 0.4830
V-Measure 0.3563 0.4340

simDISTRIB False F-Score 0.3001 0.4617
V-Measure 0.2390 0.2267

True F-Score 0.2996 0.4624
V-Measure 0.3011 0.3367

simTRANS False F-Score 0.2323 0.3781
V-Measure 0.4748 0.3106

True F-Score 0.2620 0.3887
V-Measure 0.4095 0.3435

Table 2: Spectral Clustering Results

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

PPDB2.0Score PPDB2.0Score False F-Score 0.3268 0.4304
V-Measure 0.5534 0.5046

True F-Score 0.3292 0.4312
V-Measure 0.5497 0.5326

simPPDB.cos False F-Score 0.3454 0.4865
V-Measure 0.4698 0.4881

True F-Score 0.3517 0.4856
V-Measure 0.4731 0.4983

simPPDB.js False F-Score 0.3462 0.4858
V-Measure 0.4556 0.4886

True F-Score 0.3510 0.4837
V-Measure 0.4652 0.4946

simDISTRIB False F-Score 0.3494 0.5067
V-Measure 0.4452 0.4796

True F-Score 0.3570 0.5093
V-Measure 0.4513 0.4812

simTRANS False F-Score 0.3231 0.4279
V-Measure 0.4240 0.4287

True F-Score 0.3274 0.4527
V-Measure 0.4330 0.4330

simPPDB.cos PPDB2.0Score False F-Score 0.3430 0.4888
V-Measure 0.4823 0.4535

True F-Score 0.3317 0.4526
V-Measure 0.5290 0.4803

simPPDB.cos False F-Score 0.3175 0.4166
V-Measure 0.5594 0.5244

True F-Score 0.3396 0.4635
V-Measure 0.5019 0.4426

simPPDB.js False F-Score 0.3176 0.4115
V-Measure 0.5354 0.5053

True F-Score 0.3357 0.4660
V-Measure 0.4793 0.4265

simDISTRIB False F-Score 0.3381 0.4639
V-Measure 0.4703 0.5018

True F-Score 0.3476 0.4811
V-Measure 0.4224 0.4115

simTRANS False F-Score 0.3204 0.4940
V-Measure 0.4069 0.3706

True F-Score 0.3234 0.4437
V-Measure 0.4089 0.3371

Continued. . .

Table 2: Spectral Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simPPDB.JS PPDB2.0Score False F-Score 0.3389 0.4875
V-Measure 0.4627 0.4560

True F-Score 0.3252 0.4385
V-Measure 0.5206 0.4753

simPPDB.cos False F-Score 0.3084 0.4109
V-Measure 0.5442 0.5247

True F-Score 0.3327 0.4740
V-Measure 0.4993 0.4509

simPPDB.js False F-Score 0.3035 0.4003
V-Measure 0.5233 0.4947

True F-Score 0.3327 0.4679
V-Measure 0.4702 0.4423

simDISTRIB False F-Score 0.3285 0.4701
V-Measure 0.4581 0.4905

True F-Score 0.3412 0.4885
V-Measure 0.4321 0.4065

simTRANS False F-Score 0.3095 0.4786
V-Measure 0.3968 0.3385

True F-Score 0.3130 0.4550
V-Measure 0.3955 0.3418

simDISTRIB PPDB2.0Score False F-Score 0.3182 0.5105
V-Measure 0.4113 0.4587

True F-Score 0.3150 0.4454
V-Measure 0.5241 0.4815

simPPDB.cos False F-Score 0.3160 0.4436
V-Measure 0.4805 0.5080

True F-Score 0.3436 0.4707
V-Measure 0.4770 0.4574

simPPDB.js False F-Score 0.3124 0.4658
V-Measure 0.4547 0.5086

True F-Score 0.3472 0.4761
V-Measure 0.4646 0.4313

simDISTRIB False F-Score 0.2813 0.4244
V-Measure 0.5137 0.5341

True F-Score 0.3367 0.4700
V-Measure 0.4637 0.4465

simTRANS False F-Score 0.2984 0.4876
V-Measure 0.3728 0.3685

True F-Score 0.3173 0.4501
V-Measure 0.3876 0.3531

Continued. . .

Table 2: Spectral Clustering Results (continued)

SimMethod Choose K Method Entailments? Metric WordNet+ CrowdClusters

simTRANS PPDB2.0Score False F-Score 0.2706 0.4461
V-Measure 0.4154 0.2677

True F-Score 0.2617 0.4029
V-Measure 0.5202 0.4749

simPPDB.cos False F-Score 0.2636 0.4379
V-Measure 0.4629 0.3650

True F-Score 0.2674 0.4231
V-Measure 0.5107 0.4268

simPPDB.js False F-Score 0.2647 0.4417
V-Measure 0.4416 0.3655

True F-Score 0.2667 0.4242
V-Measure 0.5106 0.4250

simDISTRIB False F-Score 0.2652 0.4562
V-Measure 0.4291 0.3655

True F-Score 0.2640 0.4476
V-Measure 0.5158 0.4111

simTRANS False F-Score 0.2601 0.4441
V-Measure 0.4180 0.3240

True F-Score 0.2584 0.3850
V-Measure 0.5131 0.4079

c1: reckon, pretend, think, imagine
c2: guess, suppose, surmise
c3: distrust, doubt, mistrust

k=3

c1: reckon, think
c2: pretend, imagine
c3: guess, doubt
c4: suppose, surmise
c5: distrust, mistrust

k=5

(a) Spectral clustering results for suspect (v)

surmise
reckon, imagine
guess, pretend, suppose, think
distrust, mistrust
doubt

(b) HGFC clustering results for suspect (v)

c1: jump, leapfrog, jumping, bypass
c2: shifted, relayed, moved, transferred,
 walked, passed, went
c3: be avoided, are prevented
c4: be prevented, are avoided, should be avoided,
 be averted, can be avoided, is avoided
c5: was avoided
c6: ignore, omit

k=6

(c) Spectral clustering results for skip (v)

omit, ignore
bypass
jump, jumping
leapfrog
be avoided, are prevented
be prevented, be averted
are avoided
is avoided
can be avoided
should be avoided
was avoided
transferred
passed, relayed
shifted, moved
went
walked

(d) HGFC clustering results for skip (v)

Figure 2: Results of clusters output by our HGFC and Spectral Clustering methods.

Table 3: WordNet+ Reference Sense Cluster Examples

Query Term Sense Clusters

film (n) c0: wrap, sheet, wrapping
c1: flick, picture, telefilm, show, movie, feature, production,
documentary
c2: episode, sequence, roll, footage, reel, negative, microfilm
c3: cinema

touch (v) c0: strike, engage, hit, press, feel, handle
c1: handle, deal, care
c2: strike, affect, move, stir, get
c3: be, reach
c4: allude, suggest
c5: receive, take, have
c6: focus on, relate, pertain, regard, concern, involve, apply, affect,
hold, refer
c7: disturb, modify, violate, change, alter
c8: contact, stick, rub, meet, ring, cover
c9: impact, hit, influence, bother, modify, alter, treat, strike, affect,
stimulate, change

Continued. . .

Table 3: WordNet+ Reference Sense Cluster Examples (continued)

Query Term Sense Clusters

soil (n) c0: silt, dirt, subsoil, mud, sand, clay, earth, ground
c1: territory
c2: farmland, land, sod, bottom, turf, ground, tillage
c3: filth, dirt

treat (v) c0: feed, provide, cater
c1: analyze, relieve, analyse, remedy, administer, medicate, nurse, care
for, correct, manipulate, operate
c2: touch, touch on, run, refine, process, affect, digest
c3: react, respond
c4: handle, deal, cover, broach, initiate, address, talk about, discuss
c5: present, give
c6: criminalize, interact, abuse, handle, nurse

severely (r) c0: badly, seriously, gravely
c1: hard
c2: sternly

dark (n) c0: nighttime, night
c1: shadow, darkness
c2: blackness, black, darkness, night
c3: darkness
c4: darkness

open (a) c0: exposed
c1: opened
c2: receptive
c3: candid
c4: loose
c5: subject, capable
c6: clear
c7: unresolved, undecided
c8: overt

charge (v) c0: require, command, burden
c1: blame, indict, accuse
c2: shoot, rush
c3: entrust, check
c4: turn on
c5: take, direct
c6: appoint, authorize, nominate, create, delegate, designate, assign,
make
c7: load, reload, fill, recharge
c8: provide, recharge
c9: change
c10: transfer, send
c11: set, determine
c12: pay
c13: burden, change

Continued. . .

Table 3: WordNet+ Reference Sense Cluster Examples (continued)

Query Term Sense Clusters

c14: blame, ascribe, impute, assign, attribute
c15: rush
c16: lodge, accuse, file
c17: instruct
c18: claim, tax, complain
c19: debit
c20: assess, account, impose, calculate, invoice, bill, levy

board (n) c0: plank
c1: table
c2: card
c3: commission, directorate, committee
c4: sheet, snowboard, skateboard, surfboard, scoreboard
c5: table
c6: surface
c7: display
c8: dashboard, panel

function (n) c0: relation
c1: ceremony, affair, occasion, party, celebration
c2: purpose, use, role, usefulness, utility
c3: procedure
c4: duty, capacity, office, part, place, portfolio, position, role, hat

Table 4: CrowdCluster Reference Sense Cluster Examples

Query Term Sense Clusters

post (n) c0: positions, job, occupations, position
c1: posting, outpost
c2: poste, postal

extended (a) c0: extension, extend, expanding, expanded, extending, enlarged,
stretched, extensive, expand, increased
c1: better, enhanced
c2: extending, protracted, stretched, prolonged

let (v) c0: continued, remained, retained, had
c1: derived, prepared
c2: ’m leaving, headed, get going, got to go now, going to do, leaving,
leave, be used, got to go
c3: shown, saw, showed, demonstrated
c4: rented, afforded, hired, rent, rented out, owned
c5: dropped, declined
c6: forgot, forgotten
c7: helped, provided, added, included, offered, gave, awarded

clean (v) c0: clean-up, cleanliness, clear, ’s clean, get cleaned up, cleansing,
wiped clean, cleanse, taken up
c1: given up, dropped out
c2: is true, potable, drinkable, is healthy, is safe

so (r) c0: then, now then, well then, so then
c1: yes
c2: accordingly, so therefore, therefore, thereby, hence, consequently,
thus
c3: so too, as well, too
c4: very
c5: even

pull (v) c0: been fired, start shooting, shot, keep firing, been shot, get shot
c1: get laid, lay
c2: conferred, earned
c3: ’m coming over, comes up, ’s happening, is arriving, coming through,
shows up, comes in, ’m coming in, be drawn, is coming, is on his way,
’m coming up, ’m coming, coming in, ’re coming, is happening, coming
up, ’s coming, comes along, ’s coming in, ’s coming up
c4: be accomplished, be undertaken, can be done, should be done, supposed
to do, be achieved
c5: learnt, derived, be learned, interpreted, been learned, be derived, be
learnt, learned
c6: is taken, gone, took, drew, can be drawn, drawn, is extracted, are
drawn, moving out, was drawn, withdrew, remove, be taken, is removed,
withdraw, are taken, got

charge (n) c0: accusation, vs, allegation, allegations, indictment, prosecution
c1: taxa, charged, fee, charging, surcharge
c2: encumbrances, responsibility, burden

Continued. . .

Table 4: CrowdCluster Reference Sense Cluster Examples (continued)

Query Term Sense Clusters

c3: capita
c4: matters

shot (n) c0: shoot, gunshot, shootings, shooting
c1: shooter

saint (n) c0: sainte, st., santa
run (v) c0: been organized, enhanced, being managed, organized, acted, structured,

designated, owned, conducted, administrated, organised, served, worked
c1: am leaving, ’re going away, ’m going now, be going, checking out, was
going, is going, are going, ’m running
c2: are complete, finished, executed, planned, exhausted, bound, can be
done
c3: be pursued, being pursued
c4: commenced, opened, initiated, championed, introduced, circulated,
decreed
c5: doing, be performed, functioning, worked, operates
c6: run off

References

Juri Ganitkevitch and Chris Callison-Burch. 2014.
The multilingual paraphrase database. In Pro-
ceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014), Reykjavik, Iceland, pages 4276–4283.

Beth Levin. 1993. English verb classes and alterna-
tions: A preliminary investigation. University of
Chicago press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compo-
sitionality. In Proceedings of NIPS.

Andrew Ng, Michael Jordan, and Y. Weiss. 2001.
On spectral clustering: Analysis and an algorithm.
Advances in Neural Information Processing Sys-
tems.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. PPDB 2.0: Better paraphrase rank-
ing, fine-grained entailment relations, word em-
beddings, and style classification. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL 2015).

Peter J Rousseeuw. 1987. Silhouettes: a graphical
aid to the interpretation and validation of clus-
ter analysis. Journal of computational and applied
mathematics, 20:53–65.

Lin Sun and Anna Korhonen. 2011. Hierarchical
verb clustering using graph factorization. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1023–1033.
Association for Computational Linguistics.

Kai Yu, Shipeng Yu, and Volker Tresp. 2005. Soft
clustering on graphs. In Advances in neural infor-
mation processing systems, pages 1553–1560.

Lihi Zelnik-Manor and Pietro Perona. 2004. Self-
tuning spectral clustering. In Advances in neural
information processing systems, pages 1601–1608.

Dengyong Zhou, Thomas Hofmann, and Bernhard
Schölkopf. 2004. Semi-supervised learning on di-
rected graphs. In Advances in neural information
processing systems, pages 1633–1640.

