

INVESTIGATION OF THE PROBABILISTIC

LEXICAL ENTAILMENT MODEL FOR

RECOGNISING TEXTUAL ENTAILMENT

Anne O’Donnell

Supervised by Prof. Stephen Pulman

MSc Dissertation

Oxford University Computing Laboratory

7 September, 2007

Abstract

Multiple natural language processing applications, including information retrieval,

question answering, information extraction, and document summarisation, involve the

task of identifying whether or not the meaning of a given sentence (called the

hypothesis) can be inferred from the truth of another similar sentence (called the text).

This task is called recognising textual entailment. Another simpler sub-task, called

recognising lexical entailment, involves determining whether every lexical concept

denoted by a word in the hypothesis is entailed by a lexical concept contained in the

text. The Bar Ilan probabilistic lexical entailment model, which was previously

proposed for the textual entailment recognition task, aims to recognise textual

entailment by solving the simpler lexical entailment recognition sub-task and using the

lexical entailment relationship as an estimator for textual entailment. This paper

further examines the probabilistic lexical entailment model as a predictor of textual

entailment.

We attempt to improve the Bar Ilan model’s performance on both the lexical and textual

entailment recognition tasks by replacing its mechanism for recognising the lexical

entailment probability (LEP) between words with two more accurate LEP metrics. The

results show that while improving the accuracy of the LEP metric increased the model’s

accuracy on the lexical entailment recognition sub-task from 64% to 79.5%, it did not

produce a corresponding increase in textual entailment recognition accuracy. This

suggests that while there are a few adjustments which could be made to the Bar Ilan

model to improve its lexical entailment recognition accuracy even further, greater gains

in textual entailment recognition may come from combining the probabilistic lexical

entailment model with other methods of semantic analysis.

iii

v

Acknowledgements

I would like to express my deep appreciation to the Marshall Commission for providing

me with the tremendous opportunity to study for two years in the UK.

I would also like to thank Professor Stephen Pulman for introducing me to the field of

computational linguistics and supervising my work in this project.

Last but not least, to my family and Will – my best judges – thank you for your endless

support.

Contents

Abstract .. iii

Acknowledgements .. v

Contents ...vii

List of Figures ... ix

Chapter One: Introduction .. 1

1.1 The Textual Entailment Recognition task .. 1

1.2 Objectives... 4

1.3 Structure .. 5

Chapter Two: The Probabilistic Lexical Entailment Model .. 7

2.1 The Probabilistic Setting .. 7

2.2 Lexical Reference .. 9

2.3 Limits of the Model ... 11

2.4 Implementation ... 12

2.4.1 Datasets .. 12

2.4.2 Calculating P(Tr = 1|t) .. 12 h

2.4.3 Calculating P(Tr = 1) ... 15 h

Chapter Three: Lexical Entailment between Pairs of Words ... 16

3.1 Lexical Entailment Probability Metrics .. 17

3.1.1 Web-based Co-occurrence Metric .. 17

3.1.2 Syntactic Feature Distributional Similarity .. 19

3.1.3 Thesaurus-based Similarity .. 25

3.2 Comparison of LEP Metrics ... 26

3.2.1 Judgement Criteria ... 26

3.2.2 Testing LEP ... 27 co

vii

viii

3.2.3 Testing LEP .. 28 ws

3.2.4 Testing LEP .. 31 thes

3.2.5 Results ... 31

3.2.4 Converting Similarity Metrics to Lexical Entailment Probabilities 33

Chapter Four: Embedding the New Lexical Entailment Probability Metrics 35

4.1 Smoothing ... 35

4.2 Textual Entailment Recognition Accuracy ... 36

4.3 Lexical Entailment Recognition Accuracy .. 41

4.4 Discussion ... 46

Chapter Five: Conclusion .. 55

Appendix A: Stop Words .. 57

Appendix B: Pseudocode for the Textual Entailment Model ... 59

Appendix C: Pseudocode for calculating LEP (u,v) ... 61 co

Appendix D: Java code for counting word-feature pairs ... 63

Appendix E: Java code for calculating feature weights .. 71

Appendix F: Java code for calculating LEP rankings ... 75 ws

Bibliography .. 85

ix

List of Figures

Figure 1. Textual entailment examples taken from the first Recognising Textual
Entailment Challenge dataset. .. 3

Figure 2. Example of input data format taken from the RTE-1 development dataset. 13

Figure 3. Example of output data format containing results of processing the input in
Figure 2. ... 15

Figure 4. Example of Minipar grammatical relationship triplet. ... 20

Figure 5. Pseudocode algorithm for counting word-feature pairs. .. 23

Figure 6. Pseudocode explaining implementation of LEPws(u,v) ... 25

Figure 7. Diagram depicting the relationship between n, F(n), R(n), and WS(f). 30

Figure 8. Pseudocode description of algorithm used to calculate top-40 words for random
nouns as evaluated by LEP . .. 30 ws

Figure 9. Top 20 most probably entailed or entailing words for the noun policy for each
LEP metric. .. 31

Figure 10. Precision values for Top-10/20/30/40 words as judged by each of three LEP
metrics. .. 32

Figure 11. Confusion matrix for two judges' assessment of a sample of word pairs. 33

Figure 12. Calculated cut-off values and performance of the Bar Ilan model on the
textual entailment recognition task, using the RTE-1 development dataset
(567 sentence pairs). ... 37

Figure 13. Performance of the Bar Ilan model on the textual entailment recognition
task; RTE-1 test dataset (800 sentence pairs). .. 38

Figure 14. Textual Entailment Similarity Score v Similarity Score. 40

Figure 15. Performance of the Bar Ilan model on the lexical entailment recognition task,
using the author-annotated dataset of 200 sentence pairs, with testing done
using 10-fold cross validation. .. 42

Figure 16. Alignment for sentence pair (ID=1251) produced by each LEP metric. 44

Figure 17. Alignment for sentence pair (ID=1250) produced by each LEP metric. 45

x

Figure 18. Alignment for sentence pair (ID=211) produced the LEP metric and
manual alignment. .. 46

thes

Figure 19. Percentage of sentence pairs correctly classified by model. The precision
scores are taken from Figure 10. .. 47

Figure 20. Harmonic mean by model. .. 48

Figure 21. Distribution of similarity scores for lexical (top) and textual (bottom)
entailment datasets.. .. 50

Figure 22. Comparison of lexical and textual entailment datasets. 51

Figure 23. Example of sentence pair that is lexically but not textually entailed. 51

Figure 24. Examples of sentence pairs which are textually but not lexically entailed. 52

1

Chapter One: Introduction

1.1 The Textual Entailment Recognition task

Human language is rich enough to express a single concept in countless ways. One of

the major challenges in getting computers to summarise, answer questions about, or

extract information from natural language text is to enable the computer to recognise

when two different pieces of text convey the same meaning. For example, a multi-

document summarisation system might attempt to summarise two documents

containing the sentences below1:

Document 1: “The International Atomic Energy Agency report detailing the

discovery also faulted Tehran for not cooperating with the U.N. watchdog's

attempts to investigate other suspicious aspects of Iran’s nuclear programme.”

Document 2: “Tehran did not cooperate with the U.N. watchdog's attempts to

investigate suspicious aspects of Iran's nuclear programme.”

The system must recognise that the two sentences convey the same concept and include

this concept in its final summary. Additionally, the system should be able to tell that

1 Sentence examples taken from the Third Recognising Textual Entailment Challenge dataset,
available from http://www.pascal-network.org/Challenges/RTE3/.

http://www.pascal-network.org/Challenges/RTE3/

2 CHAPTER ONE: INTRODUCTION

the first sentence entails the second and therefore include the entailed sentence in the

summary to prevent redundancy.

Until a few years ago, this subtask of determining whether one textual statement could

be inferred from another text fragment was addressed separately for each natural

language processing application (Glickman, 2006). A researcher attempting to judge

the performance of this subtask in a Question Answering system, for example, could

only do so by testing his subsystem against others that had been developed for Question

Answering systems. Furthermore, advances in this subtask were rarely translated

across applications. For these reasons, the PASCAL Recognizing Textual Entailment

(RTE) Challenge was introduced in 2004 to introduce textual entailment recognition as a

generic applied and evaluated task for natural language processing researchers (Dagan,

Glickman, & Magnini, 2006).

The RTE task definition defines textual entailment as a directional relation between two

text fragments called the text (the entailing text) and the hypothesis (the entailed text)

as follows (Bar-Haim, et al., 2006):

Definition 1: We say that a text T textually entails a hypothesis H if, typically, a

human reading T would infer that H is most likely true.

This operational definition assumes common background knowledge and common

human understanding of language. The definition is quite informal because it reflects

the guidelines given to human annotators when manually judging entailment between

pairs of sentences, a task which is somewhat uncertain given the variability of

language. Nevertheless it has been shown that humans achieve a fairly high degree of

agreement in judging entailment between sentence pairs. The report on the Second

Recognising Textual Entailment Challenge (RTE-2) (Bar-Haim, et al., 2006) says that in

creating the RTE-2 dataset, the average agreement between each pair of manual

annotators who shared at least 100 examples was 89.2%. The average Kappa score

1.1 THE TEXTUAL ENTAILMENT RECOGNITION TASK 3

between pairs of annotators was 0.78, indicating “substantial agreement” (Landis &

Koch, 1997).

Example Text Hypothesis Entailment

Mexico City has a very bad pollution
problem because the mountains around
the city act as walls and block in dust
and smog.

Poor air circulation out of
the mountain-walled
Mexico City aggravates
pollution.

TRUE 1

LaFarge was the one who helped Tiffany
to make the Favrile glass, said
auctioneer William Doyle who operates
an auction house in Manhattan.

William Doyle lives in
Manhattan. FALSE 2

More than 250 paintings commemorate
the centennial of the Man Ray’s birth in
Philadelphia.

Man Ray was born in
Philadelphia. TRUE 3

The government announced last week
that it plans to raise oil prices. Oil prices drop. FALSE 4

The Philippines has begun pulling its
troops out of Iraq, a move seemingly
being made to satisfy demands by
kidnappers of a Filipino hostage.

Filipino soldiers are
leaving Iraq. TRUE 5

Figure 1. Textual entailment examples taken from the first Recognising Textual Entailment Challenge

dataset.

Figure 1 provides a few examples of text and hypothesis pairs developed for the first

Recognising Textual Entailment Challenge (RTE-1) dataset.2 The participants in this

challenge were provided with a development set of 567 sentence pairs and a test set of

800 sentence pairs. They came up with textual entailment recognition systems ranging

in accuracy from 49.5% to 58.6% on the entire dataset (Glickman, 2006). The methods

they used for judging textual entailment included semantic reasoning (Tatu &

2 http://www.pascal-network.org/Challenges/RTE/

4 CHAPTER ONE: INTRODUCTION

Moldovan, 2005), syntactic matching (de Salvo Braz, Girju, Punyakanok, Roth, &

Sammons, 2005), and word overlap (Perez & Alfonseca, 2005) among others.

One of the best scoring systems at RTE-1 was developed by a group from Bar Ilan

University and used a probabilistic approach to solve the simpler sub-problem of lexical

entailment (Glickman, 2006). Lexical entailment recognition – the process of

determining whether a lexical concept represented by a word or phrase in the

hypothesis is entailed by a word or words in the text – is a necessary, but not sufficient,

criterion for textual entailment to exist (Glickman, Dagan, & Koppel, A Probabilistic

Classificaiton Approach for Lexical Textual Entailment, 2005). The Bar Ilan model

attempted to establish whether lexical entailment held between the hypothesis and text

and used this result as an estimate for the existence of a textual entailment relationship

between the two. It did so assuming a generative probabilistic model, similar to the

generative models used successfully in other areas of natural language processing such

as machine translation (Brown, et al., 1990). The overall goal of this project is to

further examine the probabilistic lexical entailment approach to recognizing textual

entailment by attempting to improve the Bar Ilan model from RTE-1.

1.2 Objectives

The strong performance of the Bar-Ilan model at RTE1 suggests that the probabilistic

lexical entailment approach holds promise for predicting textual entailment and

warrants further investigation. The main goal of this project was to improve the

accuracy of the Bar Ilan model by building on the work of (Glickman, 2006).

The Bar Ilan model created an alignment between words of the text and hypothesis

such that each word in the hypothesis aligned with the word from the text which was

most likely to have entailed it according to a lexical entailment probability metric. The

Bar Ilan model used a simple metric based on word co-occurrence frequency on the web

to evaluate the probability of lexical entailment between pairs of words. The main

thrust of work in this project centred on implementing the probabilistic lexical

entailment model with more accurate lexical entailment probability metrics in order to

1.3 STRUCTURE 5

see whether improving the accuracy of this subtask – recognising the lexical entailment

relationship between pairs of words – would improve the entire model’s accuracy in

predicting lexical and textual entailment.

1.3 Structure

The rest of this paper is organised as follows. Chapter Two describes the probabilistic

lexical entailment model in more detail. It gives an explanation of the probabilistic

assumptions under which the Bar Ilan model operates and illustrates how the

probabilistic model is used to predict the presence or absence of lexical entailment for an

entire text and hypothesis pair. The chapter finishes with a description of the model’s

implementation for this project.

Chapter Three explains the three lexical entailment probability metrics that were

implemented for this project – the original web-based co-occurrence metric from the Bar

Ilan model, a metric based on distributional similarity of syntactic features, and a third

metric based on a pre-existing thesaurus. The various metrics are judged and compared

for accuracy.

Chapter Four describes the process of embedding each of the three lexical entailment

probability metrics within the overall probabilistic model. We judge the performance of

the system on the lexical and textual entailment tasks using each metric in order to see

whether improved lexical entailment probability estimates lead to increased accuracy of

the overall model. The results show that replacing the simple web-based co-occurrence

metric from the Bar Ilan model with the two more accurate metrics improves the

model’s accuracy on the lexical entailment task but not on the textual entailment task.

In Chapter Five we state the project’s conclusions and make suggestions for further

research.

7

Chapter Two: The Probabilistic Lexical Entailment

Model

One of the top performers at the first Recognising Textual Entailment Challenge was

the system created by researchers at Bar Ilan University that estimated textual

entailment by solving the simpler task of predicting lexical reference using a

probabilistic model (Glickman & Dagan, 2005). This project implements the Bar Ilan

model following the guidelines set out in that paper. Chapter Two paraphrases the

descriptions of lexical reference and the underlying probabilistic model from (Glickman,

2006) as background for the reader. It finishes with an explanation of how this model

was implemented for this project using the Java programming language.

2.1 The Probabilistic Setting

Recognising textual entailment can be viewed as a probabilistic task. For some

text/hypothesis pairs, the presence or absence of a textual entailment relationship is

certain. For example, given the text “Kate went for a swim at 6:00 last night” and the

hypothesis “Kate swam yesterday evening,” it is definite that the text entails the

hypothesis because they convey the same information. In other words, we can say that

the text entails the hypothesis with probability of 1. On the other hand, for the text

8 CHAPTER TWO: THE PROBABILISTIC LEXICAL ENTAILMENT MODEL

“Kate did not swim last night” and hypothesis “Kate swam last night,” the probability

that the text entails the hypothesis is 0 since the hypothesis negates the text. Other

text/hypothesis pairs have a less certain entailment relationship. The text “Kate goes

swimming most evenings” definitely increases the probability that the hypothesis “Kate

went swimming last night” is true, but it does not entail it necessarily. We can say that

the probability that this last text entails the hypothesis is somewhere between 0 and 1.

Because of the probabilistic nature of the textual entailment recognition task, the Bar

Ilan model assumes a generative probabilistic setting. The full model is described

formally in (Glickman, 2006), but the main features are conveyed here to provide

background for the reader.

Let T signify the space of possible texts, and t ∈T a specific text. Let H denote the set of

all possible hypotheses, and the hypothesis h ∈ H a propositional statement which can

be assigned a truth value of 0 or 1. The possible world w signifies a mapping from H to

{ 0=false, 1=true } and is denoted by w : H {0,1}. It represents a specific state of

affairs with concrete truth assignments for all possible propositions h ∈ H. The set of

all possible worlds is signified by W.

The probabilistic generative model assumes that “texts are generated along with a

concrete state of affairs” [author emphasis]. That is, when a source generates a text t, it

also generates the set of truth assignments for all propositions h which relate to the

text, and that set of truth assignments comprises the possible world w. The truth

assignments in w therefore do not reflect some abstract “real world” but only convey the

truth or untruth of hypotheses h relating to t. The probability of generating a truth

assignment for a hypothesis h that is not at all related to the text is some prior P(h),

and the probability of a given hypothesis h being true is higher than the prior when the

related text supports the truth of h. (Glickman, 2006, pp. 53-55)

Let the random variable Trh signify the truth value given to the hypothesis h in a given

world w. We use the statement Trh = 1 to denote the event that h is assigned the truth

value of 1 or true. For a text t, the variable t also denotes the event that the generated

text is t. The definition of probabilistic textual entailment says that a text t

2.1 THE PROBABILISTIC SETTING 9

probabilistically entails a hypothesis h if t increases the likelihood of h being true. Using

t ⇒h to denote the event that t probabilistically entails h, the formal definition is below

(Glickman, 2006, p. 55):

Definition 2: For all t ∈ T and h ∈ H, t ⇒h iff P(Trh = 1|t) > P(Trh = 1).

The Bar Ilan model uses this probabilistic setting as its basis for modelling textual

entailment. This reduces the problem to estimating ܲሺܶݎ ൌ 1ሻ and ܲሺܶݎ ൌ .ሻݐ|1

2.2 Lexical Reference

A common strategy in natural language processing is to simplify a complex task into a

simpler subtask and to use the results of the subtask as an estimate for the result of the

initial, complex task. The Bar Ilan model follows this strategy by breaking the task of

textual entailment recognition into the easier subtask of lexical reference (Glickman,

2006, p. 40):

Definition 3: A word W is lexically referred in a text T if there is an explicit or

implied reference in T to a concept denoted by W.

The Bar Ilan lexical entailment model uses lexical entailment to estimate ܲሺܶݎ ൌ .ሻݐ|1

It assumes that a hypothesis h is true if and only if all its lexical components are true,

and assigns a truth value to each word u in the hypothesis indicating the presence or

absence of a lexical reference to u within the given text.

10 CHAPTER TWO: THE PROBABILISTIC LEXICAL ENTAILMENT MODEL

The probability that a given word u within the hypothesis is true is assumed to be

independent of the probabilities of the other words being true, giving the following

estimations for the probability of the truth of the complete hypothesis:

ܲሺܶݎ ൌ ሻݐ|1 ൌ ෑ ܲሺܶݎ௨ ൌ ሻݐ|1
௨א

 (2.1)

ܲሺܶݎ ൌ 1ሻ ൌ ෑ ܲሺܶݎ௨ ൌ 1ሻ
௨א

 (2.2)

Furthermore, the model assumes an alignment between words of the hypothesis and

words of the text such that each entailed hypothesis word is entailed by a specific word

in the text. Using Tv to denote the event that the word v appears within the text, this

can be written mathematically as:

ܲሺܶݎ௨ ൌ ሻݐ|1 ൌ max
௩א௧

ܲሺܶݎ௨ ൌ 1| ௩ܶሻ

 (2.3)

Thus, by combining (2.1) and (2.3), we can obtain an overall estimate for ܲሺܶݎ ൌ :ሻݐ|1

ܲሺܶݎ ൌ ሻݐ|1 ൌ ෑ max
௩א௧

 ܲሺܶݎ௨ ൌ 1| ௩ܶ
௨א

ሻ

 (2.4)

We denote as LEP(u,v) the lexical entailment probability between words u and v, which

is the same thing as ܲሺܶݎ௨ ൌ 1| ௩ܶሻ:

2.2 LEXICAL REFERENCE 11

,ݑሺܲܧܮ ሻݒ ൌ ܲሺܶݎ௨ ൌ 1| ௩ܶሻ

(2.5)

Combining Equation 2.4 and Equation 2.5 with Definition 2, we derive the complete

probabilistic lexical entailment model as used by the Bar Ilan model and which was

implemented for this project:

Definition 4. For all t∈T and h∈H, the probabilistic lexical entailment model

determines the lexical entailment relationship between t and h as

ሺݐ ⇒ ݄ሻ ุ ෑ max
௩א௧

,ݑሺܲܧܮ ሻݒ
௨א

 ܲሺܶݎ ൌ 1ሻ

The Bar Ilan model uses a simple co-occurrence frequency metric to estimate LEP(u,v)

and empirically tunes a single cut off value λ to estimate ܲሺܶݎ ൌ 1ሻ.

2.3 Limits of the Model

Lexical reference is generally a prerequisite for textual entailment to hold, but a textual

entailment relationship does not necessarily hold wherever a lexical entailment

relationship is present. This is apparent if one considers the text “John is not at home”

and the hypothesis “John is at home.” The hypothesis is definitely lexically entailed by

the text as every word in the hypothesis is also present in the text, but the meanings of

the sentences are contradictory and therefore textual entailment is clearly false.

Nevertheless, lexical entailment is a fairly good predictor of the textual entailment

relationship. This was shown by (Glickman, 2006), in which the relationship between

lexical and textual entailment was investigated in detail. Manual annotators judged a

12 CHAPTER TWO: THE PROBABILISTIC LEXICAL ENTAILMENT MODEL

set of text and hypothesis pairs from the RTE-1 development dataset for lexical and

textual entailment. The experiment showed that a system which judged lexical

entailment perfectly would achieve 69% accuracy on the textual entailment task (with

67% precision and 69% recall); in other words, the lexical and textual relationships

matched up in 69% of sentence pairs. Thus a system that implements the probabilistic

lexical entailment model perfectly should only hope to be about 69% accurate in

predicting textual entailment.

2.4 Implementation

For this project we implement the probabilistic lexical entailment model using the Java

programming language and following the guidelines given in (Glickman, Dagan, &

Koppel, 2005). The objective of the implemented model is to be able to determine, given

a text sentence and a hypothesis sentence, whether the text entails the hypothesis.

2.4.1 Datasets

The RTE-1 organisers created a large dataset of text and hypothesis pairs for training

and testing textual entailment recognition systems. Each pair has been manually

judged for the textual entailment relationship. The dataset, available for download

online,3 includes a development set of 567 pairs (283 TRUE and 284 FALSE for

entailment) and a test set of 800 pairs (400 TRUE and 400 FALSE). We use these

datasets for training and testing our implementation of the Bar Ilan probabilistic lexical

entailment model.

2.4.2 Calculating P(Trh = 1|t)

The process of predicting the textual entailment relationship has two main steps. First,

the program must estimate the probability that the hypothesis is true given the

3 http://www.pascal-network.org/Challenges/RTE/Datasets/

2.4 IMPLEMENTATION 13

existence of the text: P(Trh = 1|t). Then, to determine whether the text actually entails

the hypothesis, the system must compare the resulting value to the prior probability

that the hypothesis is true on its own: P(Trh = 1).

The program receives as input an .xml file containing text and hypothesis sentences in

the format specified by the RTE-1 datasets. In this format, text and hypothesis

sentences are denoted by the tags <t> and <h> respectively. A <pair> tag indicates the

values of the attributes id (a numerical value identifying the sentence pair), value

(indicating the existence or non-existence of the textual entailment relationship, as

judged by human annotators), and task.4

<pair id="1977" value="TRUE" task="PP">
 <t>His family has steadfastly denied the charges.</t>
 <h>The charges were denied by his family.</h>
</pair>

Figure 2. Example of input data format taken from the RTE-1 development dataset.

The model’s first intermediate task is to calculate the probability that the hypothesis is

true given the text, ܲሺܶݎ ൌ ,<ሻ, as in Equation 2.4. We begin by removing the <pairݐ|1

<t>, and <h> tags and deleting leading and trailing white space. We then convert all

digits to 0, remove punctuation characters, and convert everything to lowercase.

At this point we remove words that belong to a pre-determined stop list comprising the

50 most common words from our training corpus, a roughly 20 million token subset of

the British National Corpus (BNC Consortium, 2001) (See Appendix A). The reasons for

using a stop list are twofold. First, the web-based co-occurrence lexical entailment

probability estimate that we will embed within the model tends to assign

inappropriately high similarity scores to common words. Second, the words in the stop

4 The RTE-1 dataset labels sentence pairs according to the text processing application that
created them for comparison. The labels include Comparable Documents (CD), Machine
Translation (MT), Information Extraction (IE), Reading Comprehension (RC), Paraphrase (PP),
Information Retrieval (IR), and Question Answering (QA). This project did not consider task
labels.

14 CHAPTER TWO: THE PROBABILISTIC LEXICAL ENTAILMENT MODEL

list are common determiners, auxiliary verbs, conjunctions, and prepositions that rarely

have an impact on the overall meaning of the phrase; they do not make up the ‘meat’ of

the sentences they are in. Finally, we split what remains of the text and hypothesis at

white space and put each sentence into its own array.

Once the text t and hypothesis h are in arrays, we simply go through the hypothesis

words u∈h one at a time to find the value of max
௩א௧

,ݑሺܲܧܮ ,ሻ. For each hypothesis word uݒ

we first check whether any word from the text v∈t is equal to u. If this is the case we

align the equivalent words and say that max
௩א௧

,ݑሺܲܧܮ ሻݒ ൌ 1. If none of the words v∈t

matches u, then we find the word v∈t that returns the highest value for LEP(u, v). The

function LEP(u, v) implements one of the three lexical entailment probability metrics to

be explained in Chapter 3. Once we calculate max
௩א௧

,ݑሺܲܧܮ ሻ for each word u∈h, weݒ

multiply the results to obtain ܲሺܶݎ ൌ ሻ. A pseudocode version of the algorithm isݐ|1

given in Appendix B.

The output of this program serves two purposes. First, for each sentence pair we must

be able to extract the estimated value of ܲሺܶݎ ൌ ሻ along with the manually annotatedݐ|1

value of the textual entailment relationship (TRUE or FALSE) in order to evaluate the

accuracy of the system. Second, to aid in later analysis, the program should output the

alignments produced between the text and hypothesis along with the individual values

for LEP(u, v). Figure 4 shows the output format, which is similar to the input format

except that the text and hypothesis now contain only the words which appeared in the

text and hypothesis arrays, and two new tags are added. The results tag <r> gives the

alignment produced by the model in the format <p> u v LEP(u,v) </p> for each

hypothesis word, where u is a hypothesis word and v is the text word aligned with u.

The score tag <s> tells which lexical entailment probability model was used (web-based

co-occurrence (CO), syntactic feature distributional similarity (WS), or thesaurus

(THES)) and gives the estimate for ܲሺܶݎ ൌ .ሻݐ|1

2.4 IMPLEMENTATION 15

<pair id="1977" task="PP" value="TRUE">
 <t> family steadfastly denied charges </t>
 <h> charges denied family </h>
 <r>
 <p> charges charges 1.0 </p>
 <p> denied denied 1.0 </p>
 <p> family family 1.0 </p>
 </r>
 <s model="CO" score="1.0">
</pair>

Figure 3. Example of output data format containing results of processing the input in Figure 2.

2.4.3 Calculating P(Trh = 1)

Once the program has calculated a value for the probability that the hypothesis is true

given the text, ܲሺܶݎ ൌ ݎሻ, it must compare this with ܲሺܶݐ|1 ൌ 1ሻ to see whether the

text actually increases the probability that the hypothesis is true in accordance with

Equation 2.4. The Bar Ilan model does this by empirically tuning a value for ܲሺܶݎ ൌ 1ሻ

and classifying only sentence pairs for which ሺ ሻݐ|1 ܲሺܶݎ ൌ 1ሻ as entailing. ܲ ݎܶ ൌ

In order to empirically tune the value for ܲሺܶݎ ൌ 1ሻ we use the Weka data mining

software (Witten & Frank, 2005) to run the C4.5 decision tree algorithm on the scores

from our training dataset. The C4.5 classification algorithm (called J48 in Weka) takes

in our data with two attributes – score for ܲሺܶݎ ൌ ሻ as calculated by our model andݐ|1

value of TRUE or FALSE as manually judged. By creating a decision tree with just one

node, it determines the cut-off score λ which maximises the information gain when all

pairs for which ܲሺܶݎ ൌ ሻ > λ are classified as TRUE and all others are classified asݐ|1

FALSE.

Finally, using λ = ܲሺܶݎ ൌ 1ሻ, we can test the accuracy of our model in predicting textual

entailment by running our model on the test set and classifying the results based on

whether ܲሺܶݎ ൌ ሻݐ|1 ܲሺܶݎ ൌ 1ሻ.

16

Chapter Three: Lexical Entailment between Pairs of

Words

As mentioned earlier, the Bar Ilan model uses a very simple co-occurrence frequency

metric to estimate the lexical entailment probability between pairs of words. The task

of calculating similarity between words has already been researched as a separate

subtask quite extensively, as in the papers (Lin, Automatic retrieval and clustering of

similar words, 1998), (Geffet & Dagan, 2004), and (Geffet & Dagan, 2005). In those

papers the words are compared based on their shared syntactic features rather than

simply their co-occurrence. A third method of judging similarity between words is to

use a pre-existing thesaurus. One might expect the two latter similarity models to be

more accurate at picking substitutable words than the web-based co-occurrence

frequency estimate, and indeed our experiments in this chapter show this to be the case.

Here we give an explanation and comparison of the three LEP metrics and their

implementation for this project. The next chapter will explain how each performed

when embedded within the probabilistic lexical entailment model.

3.1 LEXICAL ENTAILMENT PROBABILITY METRICS 17

3.1 Lexical Entailment Probability Metrics

The lexical entailment probability (LEP) estimate is the piece of the probabilistic lexical

entailment model which determines which (if any) word from the text most probably

entails a given word from the hypothesis. The main goal of this project is to improve

the Bar Ilan model’s accuracy in predicting lexical and textual entailment by replacing

its LEP estimate with two other, more accurate LEP metrics. This section describes the

web-based co-occurrence frequency estimate from the Bar Ilan model as well as the

syntactic feature distributional similarity and thesaurus-based similarity estimates

that we implement for this project.

3.1.1 Web-based Co-occurrence Metric

The RTE-1 Bar Ilan model estimates the probability that one word entails another

using simple document co-occurrence frequency counts from the web. The formula is:

ܧܮ ܲሺݑ, ሻݒ ൌ
݊௨,௩

݊௩

(3.1)

where nu,v represents the number of hits from a web search for ‘u AND v’ and nv

represents the number of hits from a web search for ‘v’ (Glickman, 2006, p. 62).

This unsupervised estimate is based on the probabilistic model from Chapter 2.1,

assuming that documents in a corpus (the web) are generated by a language source. The

language source generates each text, or web page, along with the hidden possible world

that constitutes truth assignments for propositions (hypotheses) about that text. The

metric makes the simple assumption that words which are stated verbatim in the text

are true, and all other words are false. Thus, the lexical entailment probability

LEP(u,v) = P(Tru = 1|Tv) (2.5) is estimated as the probability that u appears in a

document given that the word v appears:

18 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

ܲሺܶݎ௨ ൌ 1| ௩ܶሻ ൎ ܲሺ ௨ܶ| ௩ܶሻ
(3.2)

In practice this estimate is calculated using maximum likelihood counts from the

corpus, deriving Equation 3.1 (Glickman, Dagan, & Koppel, 2005).

In order to implement this LEP metric for our project we use the Alexa Web Search

Service5 which allows us to submit and receive results from the Alexa web search

engine from within a Java programme. A variety of other web search APIs exist but we

use Alexa for this project because it does not place a limit on number of queries per day

(unlike the Yahoo! Web Search Services which limit queries to 5000 per day6) and it

enables us to extract the number of hits for a web search (unlike the Google AJAX

Search API which limits the number of results returned). This flexibility comes with a

cost, however; the Alexa Web Search Service, which is run by Amazon Web Services,

charges $0.00030 per request. This makes it necessary to carefully limit the number of

calls to the web search engine and to maintain a cache of previous queries to avoid

duplicates.

To calculate ܧܮ ܲሺݑ, ሻ it is necessary to know the number of hits for ‘v’ and the numberݒ

of hits for ‘u AND v’. The implementation of the function for this project first checks the

cache to see whether either query has already been made. Since ‘u AND v’ returns the

same number of hits as ‘v AND u’, we always search for the pair of terms in alphabetical

order. If either one of the results is not in the cache, we perform a web search and add

the resulting hits to the cache. Finally we divide nu,v by nv to calculate ܧܮ ܲሺݑ, ሻ. Aݒ

pseudocode description of the algorithm is in Appendix C.

5 http://aws.amazon.com/alexawebsearch

6 The RTE-1 development and test datasets include 7,310 distinct words and 56,877 distinct
word pairings, not including stop words. Processing these files alone would have taken nearly 13
days. Furthermore, calculating the accuracy of the co-occurrence metric required comparing each
of 10 random nouns to an entire vocabulary which could only be limited to about 20,000 words;
performing these queries would have taken 40 days.

3.1 LEXICAL ENTAILMENT PROBABILITY METRICS 19

3.1.2 Syntactic Feature Distributional Similarity

The second lexical entailment probability metric is a word similarity measure proposed

in (Lin, 1998) and tested in (Geffet & Dagan, 2004) for its ability to predict lexical

entailment. The metric is based on the distributional similarity scheme, following from

the Harris distributional hypothesis (Harris, 1954) which says that words that occur

within the same context tend to have similar meanings.

As in (Geffet & Dagan, 2004), the metric constructs a weighted feature vector to

characterise each word w. Features, made up of a word with which w co-occurs and the

grammatical relationship between them, are extracted from a corpus parsed for

grammatical dependencies. Following the notation from (Lin, 1998), we represent

grammatical dependencies from the parsed corpus by the triple (w,r,w’) where r stands

for the grammatical relationship between w and w’ (i.e. obj, subj, nmod,det etc) and we

represent features by the triplet <w,r, direction > in which direction indicates whether

w is the head word or dependent word in the grammatical relationship. Thus the

dependency triple (w,r,w’) translates to two separate word-feature pairs denoted as

(w,f). They are (w, <w’,r,D>) and (w’, <w,r,H>).

Once word-feature pairs have been extracted from the corpus, the metric applies a

weighting function to calculate the weight for each feature f within each word’s vector.

In this case we use the Mutual Information (MI) weighting function (Lin, 1998) (Dagan,

2000), defined by:

,ݓሺܫܯ ݂ሻ ൌ logଶ
ܲሺݓ, ݂ሻ

ܲሺݓሻܲሺ݂ሻ

(3.3)

where P(w,f) gives the probability that a random word-feature pair picked from the

corpus is (w, f), P(w) gives the probability of w occurring within the corpus, and P(f)

gives the probability of f occurring in the corpus. If we denote as |w,f| the frequency

count of the word-feature pair (w, f) and use * as a wildcard, we can estimate the MI

measure using frequency counts from the parsed corpus as follows:

20 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

,ݓሺܫܯ ൏ ,ݒ ,ݎ ܦ ሻ ൌ logଶ

,ݓ| ൏ ,ݒ ,ݎ ܦ |
| כ,כ |

כ,ݓ| |
| כ,כ | ൈ | ,כ ൏ ,ݒ ,ݎ ܦ |

| כ,כ |
ൌ logଶ

,ݓ| ൏ ,ݒ ,ݎ ܦ | ൈ | כ,כ |
כ,ݓ| | ൈ | ,כ ൏ ,ݒ ,ݎ ܦ |

(3.4)

Once weighted feature vectors have been constructed for each word, the syntactic

feature distributional similarity metric calculates the similarity between words by

applying a similarity function to the words’ vectors. Once again this project adopts the

similarity function used in both (Lin, 1998) and (Geffet & Dagan, 2004), where F(w)

denotes the set of active features wi in the feath ture vector of w:

,ݓሺ݉݅ݏ ሻݒ ൌ
∑ ,ݓሺܫܯ ݂ሻ ,ݒሺܫܯ ݂ሻאிሺ௪ሻתிሺ௩ሻ

∑ ,ݓሺܫܯ ݂ሻאிሺ௪ሻ ∑ ,ݒሺܫܯ ݂ሻאிሺ௩ሻ

(3.5)

We use sim(w,v) directly as the lexical entailment probability estimate, assuming that if

two words share all the same features, they will lexically entail each other:

ܧܮ ௪ܲ௦ ൌ ,ݓሺ݉݅ݏ ሻݒ

(3.6)

Calculating the syntactic feature distributional similarity between two words is a four

step process. The first step is to actually parse the corpus with a parser that can extract

dependency relationships. For this project we use the Minipar7 dependency parser on a

portion of the British National Corpus (BNC Consortium, 2001) consisting of roughly 20

million tokens. Minipar outputs grammatical relationship triplets one per line as

below:

culture N:mod:A popular

Figure 4. Example of Minipar grammatical relationship triplet.

7 http://www.cs.ualberta.ca/~lindek/minipar.htm

3.1 LEXICAL ENTAILMENT PROBABILITY METRICS 21

In this implementation, the BNC is split into thousands of files, and the Minipar parser

outputs one parsed file for each BNC input file.

Once we have the corpus parsed for grammatical relationships, the second step is to

extract and count the word-feature pairs from the grammatical relationship triplets

produced by the parser. Performing this procedure the naïve way, by maintaining a

count for each encountered word-feature pair in memory, would require a very large

amount of RAM. As a rough estimation, consider that our parsed corpus produced

nearly 10 million distinct word-feature pairs. If we store an integer for the count of

each word-feature pair, and an integer takes 16 bytes of memory in Java, this means

that maintaining the counts alone for each word-feature pair in memory would take

about 160MB. Furthermore, as the list of word-feature pairs grew larger, searching for a

particular word-feature pair in order to increase its count would take an increasingly

long time. To make the process more efficient, we implement the word-feature pair

counting step as a two part process. First we count the word-feature pairs for a small

chunk of the parsed corpus (10 files at a time), and then we combine these counts with a

master list of counts using a merge algorithm. A shortened pseudocode description of

the algorithm is in Figure 5, and the full Java code is in Appendix D.

The output of this step is a large alphabetical file of word-feature pair counts in the

format below, with one word and its set of features per line.
word <feature1> count1 <feature2> count2 ...

The total count of word-feature pairs, or |*,*|, is also recorded in the first line of the

file.

22 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

Function PairCounts(){
 Load parsed_file_list
 WHILE length(parsed_file_list)>0 {
 Initialise counts
 Put names of next 10 files from parsed_file_list into queue
 FOR each file in queue{
 DO{
 Read in next line containing word1, relationship, word2

 Set word1_feature to <word2, relationship, D>
 Set word2_feature to <word1, relationship, H>

 Add 1 to count(word1, word1_feature)
 Add 1 to count(word2, word2_feature)
 Add 2 to total_pair_count

 } UNTIL the end of the file is reached
 }
 Write total_pair_count to tempCountsFile
 FOR each word {
 Output features and counts to tempCountsFile
 }
 Set masterCountsFile to MergeCounts(tempCountsFile, masterCountsFile)
 Delete queue files from parsed_file_list
 }
}

Function MergeCounts(temp, master){
 Open temp
 Open master
 Create outfile
 IF master is empty
 Copy temp to outfile

 ELSE {
 Set combinedCount = totalFeatureCount(temp)+totalFeatureCount(master)
 Write combinedCount to outfile

 WHILE (length(temp)>0 && length(master)>0) {
 IF nextWord(temp) < nextWord(master) {
 Write nextLine(temp) to outfile

 Set temp = rest(temp)
 }
 ELSE IF nextWord(master) < nextWord(temp) {
 Write nextLine(master) to outfile

 Set master = rest(master)
 }
 ELSE IF nextWord(master) == nextWord(temp) {
 Combine feature counts from nextLine(master) and nextLine(temp)
 Write combined line to outfile

 Set temp = rest(temp)
 Set master = rest(master)

3.1 LEXICAL ENTAILMENT PROBABILITY METRICS 23

 }
 }
 IF length(master) > 0
 Copy rest of master to outfile
 IF length(temp) > 0
 Copy rest of temp to outfile

 RETURN outfile
 }}

Figure 5. Pseudocode algorithm for counting word-feature pairs.

At this point we also create a file called the feature index by re-organising the pair

counts file. The purpose of the feature index is to speed up later processing by enabling

feature counts and word-feature pair counts to be indexed by feature. It contains an

alphabetical list of features with their total counts in the parsed corpus, followed by a

list of individual words with which the feature co-occurs and their counts. The format is:

<feature> feature_count word1 count1 word2 count2 ...

The third step toward calculating the syntactic feature distributional similarity is to

construct a raw feature vector for each word by calculating the weight of each feature in

its vector. We denote as Fraw(w) the set of features that are in this initial feature vector,

and it includes all features with which w co-occurs in the corpus. The process is

straightforward and follows Equation 3.4, making use of the feature index to quickly

reference the count for each feature, |*,f|. The Java code is in Appendix E.

The output of the third step is a large alphabetical file of words w followed by the set of

features and weights for f∈Fraw(w) for which MI(w,f) > 0, with the format:

w <f1> MI(w, f1) <f2> MI(w, f2) ...

Once a weighted feature vector has been constructed for each word, we can calculate

LEPws(u,v) for any two words u and v by applying the sim function from Equation 3.5 to

their vectors. Like the authors of (Geffet & Dagan, 2004) we do not use the raw feature

vectors as produced by the previous step. Instead we apply filtering techniques to get

rid of rare and low-weight features and produce a vector of active features, F(w).

24 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

Optimally, a feature’s weight relative to the other feature weights within a word’s

vector should reflect that feature’s importance in characterising the word. As pointed

out in (Geffet & Dagan, 2004), the function ܫܯሺݓ, ݂ሻ ൌ logଶ
ሺ௪,ሻ

ሺ௪ሻሺሻ (Equation 3.4) tends

to assign inappropriately high weights to rare features. This affects the calculation of

sim(u,v) when u and v share rare features that are not important in characterising

those words but nevertheless cause the words to have a high similarity score. To

combat this problem we filter out features that occur less than 10 times in the corpus.

The feature frequency threshold of 10 was arrived at after informally experimenting

with different feature filters ranging from 0 to 20. Coincidentally this is the same

threshold that the authors of (Geffet & Dagan, 2004) used for their paper, which makes

sense considering that their corpus was of a similar size (18 million tokens versus our

20 million).

We also filter out features that have a weight of less than 4.0. This is because low-

weight features within a word’s feature vector are not important in characterising the

word but add noise to the similarity calculation. As with the feature frequency filter we

experimented with several values for the feature weight filter and again arrived at the

same threshold that was used in (Geffet & Dagan, 2004).

To calculate sim(u,v) in this implementation we first consult the feature index created

earlier to compile a list of active features, ignoring those features with frequency less

than 10. Then, when comparing the feature vectors for u and v we only consider

features that appear on the active features list and that have a weight greater than 4.0.

The pseudocode description of the implementation is in Figure 6.

3.1 LEXICAL ENTAILMENT PROBABILITY METRICS 25

Function LEPws(u,v) {

 Open feature index
 FOR each feature in the feature index {
 IF count(feature) > 10
 Add feature to valid_features
 }
 FOR each f in F_raw(u) {
 IF valid_features contains f {
 IF weight(u,f)>4{
 Add f to F(u)
 Add weight(u,f) to feature_sum(u)
 }
 }
 }

 Set numerator to 0
 FOR each f in F_raw(v) {
 IF valid_features contains f {
 IF weight(v,f)>4 {
 add weight(v,f) to feature_sum(v)
 IF F(u) contains f
 Add (weight(u,f) + weight(v,f)) to numerator
 }
 }

 Set sim = numerator / (feature_sum(u) + feature_sum(v))
 RETURN sim
}

Figure 6. Pseudocode explaining implementation of LEPws(u,v)

3.1.3 Thesaurus-based Similarity

In the paper (Geffet & Dagan, 2004) the authors report that the syntactic feature

distributional similarity measure just explained achieves about 54% precision in

predicting lexical entailment among the top-10 most similar words that it assigns to a

given random noun. The purpose of this project is to see whether replacing the web-

based co-occurrence metric LEPco with more accurate LEP metrics in the Bar Ilan

model will improve the model’s overall accuracy. While 54% precision is better than one

might initially expect the LEPco metric to achieve, it is still not terribly accurate. For

this reason we consider a third estimate for lexical entailment probability based on a

26 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

pre-existing thesaurus which was generated by Dekang Lin, a computational linguistics

researcher at the University of Alberta and author of (Lin, 1998)8.

The Lin thesaurus lists vocabulary words followed by up to 200 of their most similar

words and a similarity score between 0 and 1. This makes it very easy for our program

to calculate LEPthes(u,v) by simply searching for word v among word u’s top 200 most

similar word list, and using the similarity score that follows directly as the result for

LEPthes(u,v).

3.2 Comparison of LEP Metrics

The main objective of this project is to determine whether replacing the co-occurrence

LEPco metric from the Bar Ilan model with more accurate estimates for P(Tru = 1|Tv)

will improve the model’s overall accuracy in predicting lexical and textual entailment.

Therefore we must first determine whether the proposed LEPws and LEPthes metrics are

indeed more accurate at predicting lexically entailing word pairs than the LEPco

estimate.

3.2.1 Judgement Criteria

To test each LEP estimate’s accuracy we follow the procedure that was used in (Geffet &

Dagan, 2004) to test the accuracy of LEPws. For each of the three LEP metrics we

randomly pick 20 nouns (which occur more than 50 times in the corpus) and calculate

the top-40 highest scoring words for each noun. (Only 10 random nouns were tested for

the web-based co-occurrence metric to limit calculation costs; see Chapter 3.1.1 for an

explanation.) Then two independent judges manually judge the resulting word pairs for

8 The thesaurus is available online from (Lin, Downloads).

 3.2 COMPARISON OF LEP METRICS 27

lexical entailment. Finally we calculate the precision of each LEP metric for its top-10,

top-20, top-30, and top-40 most similar words.

The judges determine whether lexical entailment holds between word pairs by testing

for a relationship termed meaning entailing substitutability. This criterion, introduced

in (Geffet & Dagan, 2004), identifies whether some context exists in which one word

from the pair can be substituted for the other in a sentence while retaining the

sentence’s meaning. For example, in the sentence We ate pizza for lunch, we can

substitute the word food for pizza and retain the sentence’s meaning, so the meaning

entailing substitutability relationship holds for the word pair pizza-food. Meaning

entailing substitutability is a rigorous indicator of lexical entailment.

3.2.2 Testing LEPco

To test our implementation of LEPco we chose a set N of 10 random nouns and a

vocabulary V. Because of the cost involved with using the Alexa Web Search service it

was necessary to carefully limit V by first retrieving the number of hits for all the words

which occurred more than six times in our corpus (of which there were 144,412) and

then limiting V to only words which had 300,000 or more hits on the web. This reduced

the list to 76,912 vocabulary words. For each u∈N and v∈V we calculated LEPco(u, v),

the probability that v entailed u, and LEPco(v, u), the probability that u entailed v.

Compiling a list of the top scores with the associated word v for each u produced an

initial ranked list of the most likely entailed or entailing words for each u∈N.

Two problems with the initial list were immediately apparent. The first problem was

that the top 30 or so most similar words for every word u had very high positive LEPco

scores. This was a result of the Alexa web search engine using stop words which

28 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

returned very few hits. For example, at the time of testing9 the Alexa search engine

treated at as a stop word, so the number of hits for the query ‘at’ was 10 and the number

of hits for ‘at AND university’ was 126,692,000. Thus LEPco(university,at) =

126,692,000/10 = 12,669,200. For this reason we deleted from our entailing words list

all words with scores greater than 1.

The second problem which surfaced was that the LEPco metric assigns inappropriately

high scores to common words. Consider the word the, which appears within most

documents on the web. For any other word u, the number of hits for ‘u AND the’ is

going to be very close to the number of hits for ‘u’ and LEPco(the,u) will be very close to

1. To correct this problem we applied the same stop list that we used in the

probabilistic lexical entailment model (Chapter 2.4.2) and deleted these stop words from

our ranked list of entailing words. After applying these two corrections, we added the

top-40 words for each noun in N to our list of word pairs for evaluation.

3.2.3 Testing LEPws

To test the implementation of LEPws we took a set N of 20 random nouns and a

vocabulary V and found the top 40 words v∈V as calculated by LEPws (u, v). In the

interest of limiting processing time we controlled V somewhat by only considering words

v∈V that appeared more than six times in the corpus.

We call R(n) the set of related words to n and it is defined as the set of words

:ܸ∋ݒ ሺ݊ሻܨ ת ሻݒሺܨ ് Instead of comparing the vector for each n∈N to the vector for .

each v∈V, one pair of words at a time, we followed an algorithm which enabled us to

consider only word pairs (n, v) : v ∈ R(n). This required the creation of a feature weight

index, similar to the feature index created for an earlier step, which listed each feature

9 At the time of writing, the Alexa web search engine appears to have stopped using stop words.
A more recent search for ‘at’ returned 99,540,437 hits.

3.2 COMPARISON OF LEP METRICS 29

followed by its word set WS(f) of words for which f was an active feature. This had the

format:
<f> w1 MI(w1,f) w2 MI(w2,f) ...

To compile the list of top-ranked similar words for noun n, we went through n’s vector of

active features, F(n), one at a time. We filtered out inactive features using the feature

frequency and weight filters which were explained in Chapter 3.1.2. For each f∈F(n),

we pulled WS(f) from the feature weight index. Then, for each v∈WS(f) such that v ≠ n

and MI(v,f) > weight filter, we added v to R(n) if it wasn’t there already and started a

running numerator total for v to which we added MI(n,f)+MI(v,f). Finally, once we had

run through n’s entire set of active features, we divided the running numerator total for

each v∈R(n) by ∑ ,ሺ݊ܫܯ ݂ሻאிሺሻ ∑ ,ݒሺܫܯ ݂ሻאிሺ௩ሻ .

It should also be noted that in compiling the list of active features F(n) for each noun n,

it was advantageous to exclude from F(n) a list of stop features containing the 40 most

common features from the corpus in terms of inverse word frequency. Each of the stop

features occurred with over 10,000 different words in the corpus. Including these

common features would have made R(n) extremely large, and because P(f) was so large

for these frequent features, their MI weight tended to be small for every word they

occurred with. Filtering them out of F(n) eliminated a lot of unnecessary processing.

A diagram depicting the relationship between n, F(n), and R(n) is in Figure 7. A solid

line in the diagram between a word w and a feature f indicates that MI(w,f) > 4.0. Also,

all the features f∈F(n) have frequency greater than 10 and are not part of the stop

feature list.

30 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

f2 f1 fn

v1 v2 v3 v4 vm …

…

WS(f1)

R(n)

F(n)

n

Figure 7. Diagram depicting the relationship between n, F(n), R(n), and WS(f).

A pseudocode description of the whole algorithm is below, and the entire Java code is in

Appendix F.

Function RankLEPws(N){
 FOR each n in N {
 FOR each f in F_raw(n) {
 IF (count(f)>10 && MI(n,f)>4 && f not elem of stop feature list) {
 FOR each v in WS(f) {
 IF MI(v,f) > 4 {
 IF R(n) contains v
 Add MI(n,f) + MI(v,f) to tally(v)
 ELSE
 Add v to R(n)
 Set tally(v) to (MI(n,f) + MI(v,f))
 }
 }
 }
 }
 FOR each v in R(n), score(v)=tally(v)/(feature_sum(n)+feature_sum(v))
 Order R(n) by score(v), descending
 Write top-40 R(n) to output file
 }
}

Figure 8. Pseudocode description of algorithm used to calculate top-40 words for random nouns as

evaluated by LEPws.

3.2 COMPARISON OF LEP METRICS 31

3.2.4 Testing LEPthes

No extra calculations were required to compile the top-40 most similar words for our 20

nouns as judged by LEPthes because the Lin thesaurus already listed these nouns

followed by a ranked list of their most similar words. All that was necessary was to

extract the appropriate lists from the Lin thesaurus file.

3.2.5 Results

Figure 7 lists the top-20 highest scoring words for the noun policy as determined by

each of the three LEP metrics. Words that do not have a lexical entailment relationship

with policy are marked with an asterisk.

LEPco LEPws LEPthes

1 *policyholder 0.843 1 policies 0.156 1 strategy 0.223
2 *privacy 0.819 2 *management 0.121 2 law 0.217
3 *independent 0.760 3 strategy 0.112 3 economic policy 0.209
4 *devious 0.754 4 *trade 0.111 4 foreign policy 0.207
5 protectionism 0.750 5 *issues 0.107 5 reform 0.203
6 *vaults 0.750 6 *development 0.103 6 measure 0.203
7 *us 0.742 7 *research 0.099 7 stance 0.198
8 *deviations 0.725 8 plan 0.097 8 plan 0.197
9 *identifiable 0.710 9 *government 0.097 9 regulation 0.194
10 *disclose 0.683 10 law 0.097 10 *principle 0.186
11 *about 0.675 11 process 0.097 11 legislation 0.186
12 *constitutes 0.673 12 *within 0.097 12 rule 0.184
13 *macroeconomic 0.667 13 *education 0.096 13 program 0.182
14 *contact 0.661 14 *upon 0.096 14 *proposal 0.176
15 *democracies 0.650 15 *matters 0.095 15 *action 0.170
16 *brawl 0.649 16 *uk 0.095 16 *guideline 0.170
17 *cloze 0.646 17 *expenditure 0.094 17 initiative 0.168
18 *deviant 0.643 18 *value 0.092 18 *decision 0.167
19 *insurer 0.643 19 *resources 0.092 19 *development 0.164
20 *defamatory 0.643 20 *sector 0.091 20 *effort 0.163

Figure 9. Top 20 most probably entailed or entailing words for the noun policy for each LEP metric.

32 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

A quick glance at this table shows that the web-based co-occurrence LEPco metric has

the most words without a lexical entailment relationship to policy listed among its top-

20, while the LEPthes metric has the most actually entailing words in its list. This

suggests that the LEPthes metric is more accurate at judging lexical entailment between

words than LEPco and LEPws.

The result of manual testing by the two independent judges supports this suggestion.

Calculating the top-40 most similar words for the 20 random nouns with the LEPthes and

LEPws metrics and for the 10 random nouns with the LEPco metric produced a total of

1960 independent word pairs. These pairs were randomly split between the two judges

and manually judged for the presence of a textual entailment relationship. Each judge

also tested 50 pairs from the other’s list, so that a total of 100 word pairs were judged by

both judges in order to assess their agreement. In the few cases where the two judges

disagreed, the author made a judgement as a tiebreaker.

The table below shows the precision values for the top-10, 20, 30, and 40 highest scoring

words as judged by each of the annotators.

LEPco LEPws LEPthes

 Judge 1 Judge 2 Total Judge 1 Judge 2 Total Judge 1 Judge 2 Total

Top 10 .189 .151 .180 .475 .333 .405 .815 .766 .786

Top 20 .167 .160 .165 .361 .282 .319 .795 .713 .745

Top 30 .174 .179 .177 .303 .263 .280 .729 .645 .679

Top 40 .161 .179 .168 .285 .235 .257 .689 .581 .631

Figure 10. Precision values for Top-10/20/30/40 words as judged by each of three LEP metrics.

The results show that LEPthes performed significantly better than LEPco or LEPws at all

Top-N levels. It consistently achieved 46 or more percentage points of precision higher

than LEPco and 37 or more percentage points higher than LEPws. Both LEPws and

LEPthes produced 800 word pairs, but 530 of the 800 pairs produced by LEPthes were

judged a9s entailing versus only 216 of the 800 produced by LEPws.

3.2 COMPARISON OF LEP METRICS 33

The judges showed fairly high agreement on their mutually judged pairs. Overall they

agreed on 89 of 100 pairs. For the 11 pairs on which they disagreed, Judge 1 believed

that 5 were entailing and Judge 2 believed that 6 were entailing. The associated Kappa

value is 0.768, indicating ‘substantial agreement’ (Landis & Koch, 1997). A confusion

matrix that shows the distribution of their mutually judged pairs is in Figure 11.

 Judge 1

 TRUE FALSE Total

TRUE 33 6 39

Ju
dg

e
2

FALSE 5 56 61

Total 38 62 100

Figure 11. Confusion matrix for two judges' assessment of a sample of word pairs.

3.2.4 Converting Similarity Metrics to Lexical Entailment Probabilities

One may notice that the lexical entailment probability scores for LEPws and LEPthes in

Figure 7 are much lower than we would expect the actual probabilities to be. For

example, we have LEPthes(policy, law) = 0.217, even though one might expect these two

words to entail one another in more than 21.7% of contexts. For the purposes of this

project, the disparity between the calculated lexical entailment probability and the

actual entailment probability is not important. What matters are the relative lexical

entailment probabilities of different words – i.e. that entailing word pairs have higher

scores than non-entailing word pairs. This is because we judge a sentence pair for

lexical entailment based on the relationship of ܲሺܶݎ ൌ ݎሻ to ܲሺܶݐ|1 ൌ 1ሻ, and we tune

ܲሺܶݎ ൌ 1ሻ empirically from the data. So if LEP estimates are uniformly lower than

actual lexical entailment probabilities between words, the overall value of

ܲሺܶݎ ൌ ݎሻ will be low as well. But since we tune ܲሺܶݐ|1 ൌ 1ሻ to fit the data, we should

still be able to find a value of ܲሺܶݎ ൌ 1ሻ that separates entailing from non-entailing

34 CHAPTER THREE: LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS

sentences as long as entailing word pairs are uniformly ranked higher than non-

entailing word pairs.

Chapter Four: Embedding the New Lexical

Entailment Probability Metrics

In this section we train the probabilistic lexical entailment model on the RTE-1

development dataset and test it on the RTE-1 test dataset, embedding each of the three

LEP metrics in turn. Analysis of the results shows that while replacing the web-based

co-occurrence LEP metric from the Bar Ilan model with the more accurate syntactic

feature distributional similarity and thesaurus based metrics does not improve the

model’s ability to predict textual entailment, it does cause the model to perform better

in the lexical entailment recognition task. This chapter describes and presents the

results of our experiments.

4.1 Smoothing

One of the main differences between the LEPco metric and the other two is that the

LEPco metric is capable of calculating a similarity score for any pair of words, while the

LEPws estimate can only calculate similarities for words that share syntactic features

and the LEPthes metric can only calculate similarities for word pairs listed within the

thesaurus. This affects the textual entailment model’s alignment when the model

encounters a hypothesis word h that is not comparable to any of the text words. We

35

36 CHAPTER FOUR: EMBEDDING THE NEW LEP METRICS

cannot just say that the lexical entailment probability for such words is 0 because the

overall entailment probability for the sentence is the product of the maximum LEP

values for each word, and an LEP of 0 for one word would bring down the probability of

the entire sentence. Therefore it is necessary to incorporate smoothing into the model to

come up with an LEP score for hypothesis words that have no comparable words from

the text. This is similar to using smoothing in bigram models to calculate probabilities

for unseen bigrams.

For this project we adopt a simple smoothing method, based on the additive smoothing

technique for bigram modelling, which assumes that each unseen bigram occurs once

(Chen & Goodman, 1996). This is generally not a strong smoothing method but we use

it nonetheless for the sake of simplicity and because it aligns with our probabilistic

setting, which says that the probability of generating some hypothesis h totally

unrelated to the text is some prior P(h).

In this case we assume that the LEP for incomparable hypothesis words is some small

constant . In testing I experimented with several values of for both the LEPthes and

LEPws metrics. The reason for testing with several values is that there must be a large

enough difference between possibly-entailing words (i.e. words for which a LEP can be

calculated) and completely incomparable words to reflect the actual fact that the lexical

entailment probability for incomparable words is very low. On the other hand we

cannot make the LEP for incomparable words so low that one incomparable hypothesis

word destroys the entailment probability of an entire sentence. So in this

implementation we substituted the values = {0.001, 0.01, 0.02} to test across a small

range of orders of magnitude.

4.2 Textual Entailment Recognition Accuracy

The RTE-1 development and test datasets described in Chapter 2.4.1 are manually

annotated for the textual entailment relationship. This makes it straightforward to test

the Bar Ilan model’s accuracy in predicting textual entailment by first tuning the cut-off

4.2 TEXTUAL ENTAILMENT RECOGNITION ACCURACY 37

value λ based on the annotated values and calculated entailment probability scores from

the development dataset. We then use the empirically tuned value of λ to classify each

sentence pair in the test dataset based on its calculated entailment probability. Finally

we check the classification of the test data against the manually annotated entailment

relationship values to determine the model’s overall accuracy.

After implementing the smoothing measure, I ran the textual entailment model on the

RTE-1 development dataset once using LEPco and three times each for LEPthes and

LEPws, substituting a different smoothing value (0.001, 0.01, and 0.02) in each trial.

After each run of the model on the development dataset, I fed the resulting scores and

their pre-judged entailment values for all sentence pairs to the Weka software which

empirically tuned λ using the C4.5 algorithm. The following table displays the resulting

values for λ and the accuracy of each model on the training data. It shows that the

LEPws metric was the best at classifying the training data in terms of percent of

correctly classified sentences by a very small margin, and that all models had a high

occurrence of false positives.

 λ Percent
Correct

True
Positives

False
Positives

True
Negatives

False
Negatives Metric

LEPco .000517 55.9083 261 228 56 22

0.001 .000018 57.3192 202 161 123 81
LEPws 0.01 .000075 57.50 219 176 108 64

0.02 .000192 56.875 215 173 111 68
0.001 7.73E-11 56.9665 264 225 59 19

LEPthes 0.01 .00008 56.9665 222 183 101 61

0.02 .00016 56.9665 222 183 101 61

Figure 12. Calculated cut-off values and performance of the Bar Ilan model on the textual entailment

recognition task, using the RTE-1 development dataset (567 sentence pairs).

I then tested each model’s performance on the test data by classifying each sentence

pair within the test dataset based on the model’s associated cut-off value λ. The model

read in the calculated entailment probabilities for each sentence pair in the test dataset,

and classified sentence pairs for which P(Trh=1|t) ≤ λ as FALSE and the rest as TRUE.

The results are shown in the table on the next page.

Metric

Sm
oo

th
in

g
V

al
ue

(

)

C
or

re
ct

ly

C
la

ss
if

ie
d

In
co

rr
ec

tl
y

C
la

ss
if

ie
d

T
ru

e
P

os
it

iv
es

F
al

se
 P

os
it

iv
es

T
ru

e
N

eg
at

iv
es

F
al

se
 N

eg
at

iv
es

B
re

ak
do

w
n

by

C
la

ss

T
P

 R
at

e

F
P

 R
at

e

P
re

ci
si

on

R
ec

al
l

F
-M

ea
su

re

LEPco 457
(57.125%)

343
(42.875%) 370 313 87 30

TRUE .925 .783 .542 .925 .683
FALSE .218 .075 .744 .218 .337

LEPws

0.001 453
(56.625%)

347
(43.375%) 294 241 159 106

TRUE .735 .603 .550 .735 .629
FALSE .398 .265 .600 .398 .478

0.01 460
(57.50%)

340
(42.5%) 317 257 83 143

TRUE .793 .643 .552 .793 .651
FALSE .358 .208 .633 .358 .457

0.02 455
(56.875%)

345
(43.125%) 311 256 144 89

TRUE .778 .640 .549 .778 .643
FALSE .360 .223 .618 .360 .455

LEPthes

0.001 455
(56.875%)

345
(43.125%) 369 314 86 31

TRUE .923 .785 .54 .923 .681
FALSE .215 .078 .735 .215 .333

0.01 450
(56.25%)

350
(43.75%) 307 257 143 93

TRUE .768 .643 .544 .768 .637
FALSE .358 .233 .606 .358 .450

0.02 450
(56.25%)

350
(43.75%) 307 257 143 93

TRUE .768 .643 .544 .768 .637
FALSE .358 .233 .606 .358 .450

Figure 13. Performance of the Bar Ilan model on the textual entailment recognition task; RTE-1 test dataset (800 sentence pairs).

4.2 TEXTUAL ENTAILMENT RECOGNITION ACCURACY 39

Looking at the results table, the first thing that is noticeable is that the more accurate

LEP metrics did not produce more accurate textual entailment models overall. The

‘least accurate’ LEP metric, LEPco, did better than the ‘most accurate’ metric, LEPthes,

and nearly as well as the best LEPws model in terms of the percentage of sentences it

classified correctly as textually entailing or non-entailing. Furthermore, the LEPws and

LEPthes models were just about even in terms of correctly classifying sentence pairs,

even though LEPthes was more accurate than LEPws at picking entailing word pairs as

discussed in Chapter 3.2.5. By a slim margin, the best of the seven models was the one

that used LEPws with =0.01. It correctly classified 57.5% of sentence pairs, with a

recall of .793 and precision of .552 on the TRUE pairs and recall of .358 with precision of

.633 on the FALSE sentence pairs.

The second thing that jumps out is that the vast majority of errors for all models were

false positives. Every model was overwhelmingly biased toward classifying sentences as

entailing. This can be explained by looking at the data visualisation output from the

Weka software. Figure 14 shows a plot of similarity scores, with sentence pairs

classified as FALSE in red and TRUE pairs in shown in blue. The data is scattered for

better visibility.

The figure shows that there is no apparent distinction in similarity score for TRUE and

FALSE sentence pairs. One would expect that a system which effectively separated

TRUE and FALSE sentences by similarity score would show a large cluster of blue data

points toward the top right of the figure, and a cluster of red points in the bottom left.

As it stands there is no obvious cut-off point; red and blue points are mixed together for

all score values. This is why the models could not set a cut-off value λ that effectively

separated TRUE from FALSE sentence pairs.

40 CH AAPTER FOUUR: EMBEDDDING THHE NEW LEEP METRICCS

Figure 14

displays th

Data has b

4. Textual En

he distribution

been scattered

ntailment Sim

n of similarity

 for better visib

milarity Score

 scores for sent

bility.

e v Similarity

tence pairs clas

ty Score. The v

ssified as TRU

visualisation i

UE (blue) and F

in this figure

FALSE (red).

The prob

estimati

existence

model th

entailme

about 69

that inco

perform

to explai

entailme

entailme

babilistic lex

on of the lex

e of a textua

hat uses lexi

ent relations

9% of the tim

orporated fa

 better than

in these resu

ent probabil

ent recognit

xical entailm

xical entailm

al entailmen

ical entailm

ship betwee

me. Howeve

airly accurat

n those with

ults is to se

lity metrics

tion subtask

ment model

ment relatio

nt relations

ment as the s

en a pair of

er, our best

te lexical en

h inaccurate

e whether o

 actually im

k.

 for recogni

onship direc

ship. As wa

sole criterio

sentences c

 model was

ntailment pr

 LEP estim

or not imple

mproved the

sing textua

ctly as its es

s discussed

on for estima

an only hop

 only 57.5%

robability e

ates. The fi

ementing mo

 model’s acc

l entailmen

stimate for t

 in Chapter

ating the te

pe to estima

 accurate, a

stimates did

irst step tow

ore accurate

curacy on th

nt uses its

the

 2.3, any

xtual

ate correctly

and models

d not

ward trying

e lexical

he lexical

y

4.3 LEXICAL ENTAILMENT RECOGNITION ACCURACY 41

4.3 Lexical Entailment Recognition Accuracy

One possible reason why embedding more accurate LEP metrics did not produce more

accurate textual entailment systems overall could be that the more accurate LEP

estimates did not improve the model’s performance on the lexical entailment recognition

subtask either. We therefore conduct a second round of tests to see whether this is the

case, or whether we can rule it out.

There was no pre-annotated dataset for the lexical entailment relationship so it was

necessary to create one. To do this I took a portion of the RTE-1 dataset containing 200

sentence pairs and manually judged each for the lexical entailment relationship. To

perform the manual annotation I ignored stop words (from Appendix A) in the text and

hypothesis, and for each word h in the hypothesis, I checked to see whether h was

lexically entailed by a single word from the text. If all the hypothesis words were

lexically entailed, then the sentence was lexically entailed and the sentence pair given

the value TRUE. If even one hypothesis was not lexically entailed by a word from the

text, the entire sentence pair was given the value FALSE for the lexical entailment

relationship. When judging word pairs for lexical entailment I used the meaning

entailing substitutability criterion discussed in Chapter 3.2.1. I also judged any word

pair that consisted of different forms of the same word (i.e. liked, likes; ran, running;

tree, trees; Iran, Iranian) as entailing.

With the annotated lexical entailment dataset I tuned cut-off values for each of the 7

entailment models, including all combinations of LEP metric and smoothing constant ,

using the Weka software. This time I used the same entailment probability scores

calculated by each of the models as before but instead of using the textual entailment

values I used the new lexical entailment values for classification. Since I did not have

separate development and test sets, it was necessary to do a 10-fold cross-validation to

come up with accuracy measurements for each model. Also, when tuning the cut-off

values, the decision trees created by the C4.5 algorithm had more than one node for

Metric

Sm
oo

th
in

g
V

al
ue

(

)

C
ut

 o
ff

 v
al

ue
 λ

C
or

re
ct

ly

C
la

ss
if

ie
d

In
co

rr
ec

tl
y

C
la

ss
if

ie
d

T
ru

e
P

os
it

iv
es

F
al

se
 P

os
it

iv
es

T
ru

e
N

eg
at

iv
es

F
al

se
 N

eg
at

iv
es

B
re

ak
do

w
n

by

C
la

ss

T
P

 R
at

e

F
P

 R
at

e

P
re

ci
si

on

R
ec

al
l

F
-M

ea
su

re

LEPco .03735 128
(64%)

72
(36%) 79 40 49 32

TRUE .712 .449 .664 .712 .687
FALSE .551 .288 .605 .551 .576

LEPws

0.001 .00590 144
(72%)

56
(28%) 75 20 69 36

TRUE .676 .225 .789 .676 .728
FALSE .775 .324 .657 .775 .711

0.01 5.865E-4 145
(72.5%)

55
(27.5%) 77 21 68 34

TRUE .694 .236 .786 .694 .737
FALSE .764 .306 .667 .764 .712

0.02 .001714 145
(72.5%)

55
(27.5%) 77 21 68 34

TRUE .694 .236 .786 .694 .737
FALSE .764 .306 .667 .764 .712

LEPthes

0.001 7.468E-5 159
(79.5%)

41
(20.5%) 90 20 69 21

TRUE .811 .225 .818 .811 .814
FALSE .775 .189 .767 .775 .771

0.01 7.468E-4 148
(74%)

52
(26%) 87 28 61 24

TRUE .784 .315 .757 .784 .770
FALSE .685 .216 .718 .685 .701

0.02 .001494 153
(76.5%)

47
(23.5%) 86 22 67 25

TRUE .775 .247 .796 .775 .785
FALSE .753 .225 .728 .753 .740

Figure 15. Performance of the Bar Ilan model on the lexical entailment recognition task, using the author-annotated dataset of 200 sentence pairs, with

testing done using 10-fold cross validation.

4.3 LEXICAL ENTAILMENT RECOGNITION ACCURACY 43

most models with this dataset. I used the DecisionStump algorithm instead. The

DecisionStump is basically a decision tree limited to one node. The results are shown in

the table in Figure 15.

As the table shows, the Bar Ilan model correctly classified more sentence pairs for the

lexical entailment recognition task than it did for recognising textual entailment in

every case. Furthermore, embedding more accurate LEP metrics corresponded with

overall higher accuracy on the lexical entailment task. Recall that the LEPco metric

achieved a precision of only 18% for its top ten highest scoring word pairs in the tests in

Chapter 3.2.5, while the LEPws metric achieved 40.5% precision and the LEPthes metric

did the best with 78.6%. When embedded within the Bar Ilan model, these metrics

produced 64%, 72.5%, and 79.5% correctly classified sentence pairs respectively on the

lexical entailment recognition task. This shows that models with more accurate metrics

for recognising entailing word pairs within the alignment model produced better overall

lexical entailment recognition at the sentence level.

The numbers of false positives and false negatives were more balanced for every model

than they were in the textual entailment recognition task, where false positives were

overwhelmingly more common. For the LEPco and LEPthes metrics the number of false

positives was slightly higher than the number of false negatives, while for the LEPws

metric it was the other way around. Overall the strongest model was the one that used

LEPthes with =0.001. It classified 79.5% of the sentence pairs correctly, with recall of

.811 and precision of .818 for the TRUE pairs and recall of .775 with precision of .767 on

the FALSE sentence pairs.

The reason why the improved LEP metrics led to improved lexical entailment

recognition can be seen by examining the word alignment produced on a sentence pair

by each of the three metrics. Figure 16 shows an example sentence pair from the RTE-1

dataset and the various alignments produced by each LEP metric.

44 CHAPTER FOUR: EMBEDDING THE NEW LEP METRICS

Text: It asserted that within this framework, we draw your attention (People’s

Congress members) to Legislation 24 dealing with foreign currency circulation,
which is no longer applicable and it has become one of the most significant
obstacles to economic and investment activities.

Hypothesis: Article 24 is obsolete, and is hindering the economy.

Textual Entailment: TRUE

Lexical Entailment: FALSE

Hypothesis
Word

LEPco
Alignment

LEPws
Alignment

LEPthes
Alignment

Manual
Alignment

article no legislation legislation legislation
00 00 00 00 00
obsolete no (none) (none) (none)
hindering no (none) (none) (none)
economy no investment currency economic

Figure 16. Alignment for sentence pair (ID=1251) produced by each LEP metric.

This is a typical alignment by each of the three LEP metrics illustrating some common

mistakes. The most inaccurate LEPco metric aligns every hypothesis word not stated

verbatim in the text with the text word no because no is a very common word and, as

explained in Chapter 3.2.2, common words tend to produce inappropriately high values

for LEPco. Thus its prediction of lexical entailment for this sentence pair is inaccurate.

LEPws and LEPthes both do fairly well on recognising that neither obsolete nor hindering

is lexically entailed by any single word from the text, but they also both make a typical

mistake on the term economy by aligning it with a related, but not technically entailing,

word. Both are more accurate than LEPco, but not perfect. Another example sentence

pair follows in Figure 17.

In this case, the most accurate LEP metric, LEPthes, produced the most correct

alignments, while LEPco and LEPws produced the least. Most of the incorrect

alignments produced by LEPco made no sense (i.e. speculated occurrence; tried

pointing; use affirmed). The LEPws metric aligned just as many words incorrectly,

but the words it misaligned tended to be related in some way (i.e. For speculated

affirmed both words are verbs in the past tense having to do with making a statement).

However it was unable to pick up that id was short for identity, which may have been

4.3 LEXICAL ENTAILMENT RECOGNITION ACCURACY 45

solved had the training corpus been larger. The LEPthes metric made the least mistakes

and produced

Text: On the other hand, Hilal affirmed that some voters were abroad or did not obtain

their election cards, pointing to the occurrence of rare violations such as, for
example, the desire of some voters to vote by using their identity cards.

Hypothesis: Hilal speculated that some of voters had not received voting passes, or had tried

to use their id cards.

Textual Entailment: TRUE

Lexical Entailment: FALSE

Hypothesis
Word

LEPco
Alignment

LEPws
Alignment

LEPthes
Alignment

Manual
Alignment

hilal hilal hilal hilal hilal
speculated occurrence affirmed (none) (none)
some some some some some
voters voters voters voters voters
received affirmed using (none) obtain
voting voters pointing vote vote
passes voters (none) (none) cards
tried pointing using abroad (none)
use affirmed such obtain using
id pointing (none) identity identity
cards cards cards cards cards

Figure 17. Alignment for sentence pair (ID=1250) produced by each LEP metric.

the most accurate alignments. Overall, the more accurate the LEP metric, the better

alignments the model produces and the more accurate the model is at predicting lexical

entailment.

There is still room for improvement on the lexical entailment recognition task. The two

errors that the model made were false positives – marking FALSE sentences as lexically

entailing – and false negatives – marking TRUE sentences as not entailing. Examining

some of the incorrectly classified sentence pairs shows the reason for the errors. The

false negatives were caused when the LEP metric failed to recognise entailing word

pairs, and in most cases the missed word pairs were different forms of the same word.

For instance, in the example from Figure 18 which shows an alignment created by the

LEPthes metric, the hypothesis words are all actually entailed by a different form of the

46 CHAPTER FOUR: EMBEDDING THE NEW LEP METRICS

same word (study studies, hibernation hibernating, mammal mammals,

german germany). However, the LEPthes fails to recognise most of these entailments

and produces a very low score for the sentence pair, resulting in its classification of not

entailing. In order to correct this deficiency we may want to incorporate stemming or

some other method of recognising different variations of the same word into our LEP

metrics.

Text: The German-based team say their study is the only report of prolonged

hibernation in a tropical mammal.

Hypothesis: The team studies hibernating mammals in Germany.

Lexical Entailment: TRUE

Hypothesis
Word

LEPthes
Alignment

Manual
Alignment

team team team
studies (none) study
hibernating (none) hibernation
mammals (none) mammal
germany german german

Figure 18. Alignment for sentence pair (ID=211) produced the LEPthes metric and manual alignment.

The other errors that the model made were false positives. Some of the false positives

happened when the model simply aligned word pairs that were actually not entailing.

Others were caused by an inconsistency in the model’s estimation of the cut-off value,

λ=P(Trh=1). Examining the table in Figure 15, one will notice that in every case where

the model uses smoothing, the cut-off value is less than the smoothing value. This

means that FALSE sentences which are correctly identified as having just one un-

entailed hypothesis word will still be classified as lexically entailing. This is an

inconsistency that can only be fixed by adjusting the probabilistic model to estimate

P(Trh=1) in a more logical way than simple empirical tuning.

4.4 Discussion

By testing the performance of the several Bar Ilan models on the textual and lexical

entailment recognition tasks, we find that embedding more accurate LEP estimates

4.4 DISCUSSION 47

does in fact increase the model’s overall accuracy in predicting lexical entailment but

does not affect the model’s accuracy in the textual entailment recognition task. The

figure below compares the seven models that were tested in terms of the percentage of

sentence pairs they classified correctly. Looking at this table one can see that the

accuracy of the seven models does not vary significantly for the textual entailment task.

For the lexical entailment task, though, the model using the least accurate LEPco metric

classifies only 64% of sentence pairs correctly, while the model using the most accurate

LEPthes metric classifies 79.5% of pairs correctly when used with =0.001.

LEP Metric LEPco LEPws LEPthes

Precision of Top-10
similar words .180 .405 .786

 0.001 0.01 0.02 0.001 0.01 0.02
Textual Entailment %
Correctly Classified 57.125 56.625 57.5 56.875 56.875 56.25 56.25

Lexical Entailment %
Correctly Classified 64 72 72.5 72.5 79.5 74 76.5

Figure 19. Percentage of sentence pairs correctly classified by model. The precision scores are taken from

Figure 10.

Another way to compare the models’ performance on the two tasks is by adapting a

common evaluation measure from Information Retrieval called the F-measure (van

Rijsbergen, 1979). The F-measure is calculated using the formula:

,ݎሺܨ ሻ ൌ
ݎ2

ݎ

(4.1)

where r denotes recall and p denotes precision of an information retrieval system. As

explained in (Rennie, 2004), the F-measure is simply the harmonic mean of the recall

and precision values. That paper defines the harmonic mean H of the set of numbers

X = {x1...xn} as:

1
ܪ

ൌ
1
݊

1
ݔ

ୀଵ

48 CHAPTER FOUR: EMBEDDING THE NEW LEP METRICS

(4.2)

Our systems have two sets of recall and precision values – one for the sentence pairs

classified as TRUE and another for the pairs classified as FALSE. We can adapt the F-

measure to our system by simply taking the harmonic mean of all four numbers,

substituting X={rT,pT,rF,pF} in Equation 4.2. The figure below shows the harmonic

mean of each model on the textual and lexical entailment recognition tasks.

LEP Metric LEPco LEPws LEPthes

Precision
of Top-10
similar
words

.180 .405 .786

 N/A 0.001 0.01 0.02 0.001 0.01 0.02
Textual

Entailment
Harmonic

Mean
0.451603 0.543629 0.537223 0.5331385 0.4470781 0.5274415 0.527441

Lexical
Entailment
Harmonic

Mean
0.627127 0.71954 0.724462 0.7244621 0.7921352 0.7340627 0.762159

Figure 20. Harmonic mean by model.

Using the harmonic mean as a judge, the two worst-performing models for the textual

entailment recognition task were the LEPco model and the LEPthes model with =0.001.

Referring back to Figure 13, we see that both of these models classified 683 of 800

sentence pairs as textually entailing, leading to a very high number of false positives

and consequently very low recall for the FALSE pairs, which brought down their

harmonic means. Overall, the precision of the LEP metric does not seem to have much

bearing on the harmonic mean for the textual entailment recognition task. For the

lexical entailment task, however, we notice that the most accurate LEPthes metric

produces the best harmonic means overall, while the least accurate LEPco metric

produces the lowest harmonic mean. Again, high accuracy for the embedded LEP

metric correlates to better accuracy on the lexical entailment recognition task but not on

the textual entailment recognition task.

4.4 DISCUSSION 49

It is relatively straightforward to see why the Bar Ilan model performed so much better

on the lexical entailment recognition task overall than it did on predicting textual

entailment. Recall that the Bar Ilan model is designed to predict lexical entailment

directly, and then to use this as the estimate for the textual entailment relationship. It

is more closely related to the lexical than the textual entailment prediction task and

thus should perform it better.

If we look at the distribution of scores for the lexical entailment dataset next to the

distribution of scores from the textual entailment dataset (repeated from Figure 14), we

see that while the textual entailment dataset does not obviously separate into clusters

of TRUE and FALSE sentence pairs, the lexical entailment graph shows a much more

distinct separation between the sentence pairs classified as TRUE, in blue, and the

FALSE sentence pairs in red. Thus it was possible for the model to pick a cut-off point

that better separated the data. However the area where the two clusters meet is still

fairly mixed, which explains why the model was still not completely accurate at

predicting lexical entailment.

The question that remains is why the gains in lexical entailment recognition accuracy

resulting from the embedding of more accurate LEP metrics did not translate to

increased accuracy on the textual entailment recognition task. After examining

disagreements in sentence pair classification between the lexical entailment and textual

entailment datasets, it is apparent that this may be due in part to the fact that lexical

entailment recognition is only part of the process of recognising textual entailment; a

perfect textual entailment recognition system would need to incorporate other tests in

addition.

50 CH AAPTER FOUUR: EMBEDDDING THHE NEW LEEP METRICCS

Figure 21

the more d

dataset tha

1. Distribution

distinct separa

an for the textu

 of similarity s

tion between T

ual entailment

scores for lexic

TRUE (blue) a

t recognition d

cal (top) and te

nd FALSE (re

dataset.

extual (bottom)

ed) sentence pa

) entailment d

airs for the lexi

datasets. Note

ical entailment

4.4 DISCUSSION 51

The confusion matrix below compares the lexical and textual entailment classifications

for the 200 sentence pairs in the lexical entailment dataset. Of the 200 sentence pairs,

134 (67%) agreed in their lexical and textual entailment classifications. This is close to

the value of 69% agreement between lexical and textual entailment classifications

estimated in (Glickman, 2006).

 Textual Entailment Classification

 TRUE FALSE Total

Le
xi

ca
l

E
nt

ai
lm

en
t

C
la

ss
ifi

ca
tio

n

TRUE 74 37 111

FALSE 29 60 89

 Total 103 97 200

Figure 22. Comparison of lexical and textual entailment datasets.

Of the 66 sentence pairs for which the lexical and textual classification was different, 37

(56%) were lexically entailed but not textually entailed. An example of one of these

sentence pairs is below:

Text: Gunmen loyal to Bosnian Serb nationalist leader Radovan Karadzic conquered

70% of Bosnia with their arsenal of tanks, aircraft and howitzers bequeathed by
the Yugoslav army.

Hypothesis: Radovan Karadzic is the leader of Bosnia.

Figure 23. Example of sentence pair that is lexically but not textually entailed.

In this hypothesis there are four words that are not stop words and all of them are

stated verbatim in the text, so the lexical entailment relationship holds for the sentence

pair. But the underlying meaning of the text does not entail the underlying meaning of

the hypothesis, so it is not textually entailed. Our probabilistic lexical entailment model

is incapable of picking up this difference. In order to classify this sentence directly, we

would need a textual entailment recognition model that incorporated some type of

semantic analysis.

52 CHAPTER FOUR: EMBEDDING THE NEW LEP METRICS

The other 29 sentence pairs for which the lexical and textual entailment classifications

did not match up were textually entailed but not lexically entailed. A few examples of

such pairs are repeated below to illustrate some of the issues that cause these errors.

Pair 1
Text: Treasures belonging to Hollywood legend Katharine Hepburn have raised £3.2m

at a two-day auction in America.
Hypothesis: A two-day auction of property belonging to actress Katharine Hepburn brought in

3.2 million pounds.

Pair 2
Text: The memorandum noted the United Nations estimated that 2.5 million to 3.5

million people died of AIDS last year.
Hypothesis: Over 2 million people died of AIDS last year.

Pair 3
Text: Jakarta lies on a low, flat alluvial plain with historically extensive swampy

areas; the parts of the city farther inland are slightly higher.
Hypothesis: The parts of Jakarta away from the coast are on slightly higher land.

Pair 4
Text: The country’s largest private employer, Wal-Mart Stores Inc., is being sued by a

number of its female employees who claim they were kept out of jobs in
management because they are women.

Hypothesis: Wal-Mart sued for sexual discrimination.

Pair 5
Text: Government forces killed the head of the Armed Islamic Group, or GIA, which

has claimed responsibility for killing 61 foreigners in the last year.
Hypothesis: The abbreviation GIA stands for Armed Islamic Group.

Figure 24. Examples of sentence pairs which are textually but not lexically entailed.

The problems with the first three pairs can would be relatively straightforward to

manage. The issue with Pair 1 is that the lexical entailment model does not recognise

that £3.2m is an abbreviation for 3.2 million pounds; this could be solved by including £

and m as words of the text and training the model to recognize that £ entails pounds

and m entails million. The issue for Pair 2 is that our model does not have any

mechanism to do numerical analysis; it converts all digits to 0 and cannot recognise that

2.5 million to 3.5 million entails over 2 million. This might be solved by refraining from

converting digits to 0 and incorporating some sort of numerical analysis, perhaps by

interpreting words like over, under, and approximately in their mathematical senses of

>, <, and ≈. The reason why Pair 3 is not lexically entailed is that our model does not

consider phrase entailment; if it did, it would recognise that farther inland entails away

4.4 DISCUSSION 53

from the coast. It may be possible to implement phrasal entailment by applying

techniques developed for statistical phrase-based translation (Koehn, Och, & Marcu,

2003) or paraphrase recognition (Quirk, Brockett, & Dolan, 2004) (Dolan, Quirk, &

Brockett, 2004). Pair 4 and Pair 5 have deeper problems. For both sentence pairs it is

only possible to conclude that the textual entailment relationship holds by combining

semantic understanding and world knowledge, which are difficult research areas in

natural language understanding.

As the errors above illustrate, recognising lexical entailment is only one of the

requirements for recognising textual entailment. This is why the gains in lexical

entailment recognition which resulted from embedding more accurate LEP estimates

within the model did not translate to gains in textual entailment recognition.

55

Chapter Five: Conclusion

The overall aim of this project was to see whether it was possible to improve the

accuracy of the Bar Ilan probabilistic lexical entailment model on the textual entailment

recognition task by replacing its simple web-based co-occurrence lexical entailment

probability estimate with more accurate LEP metrics. We implemented the Bar Ilan

LEPco metric as well as two other estimates based on the distributional similarity of

syntactic features (LEPws) and an existing thesaurus (LEPthes). We then tested the

accuracy of each metric to verify that the two latter metrics were more precise than the

first. Finally we embedded each LEP metric within the Bar Ilan model to test its effect

on the model’s performance in the lexical and textual entailment recognition tasks.

The results of these tests showed that increasing the LEP metric’s accuracy

corresponded with an increase in the model’s lexical entailment prediction accuracy

from 64% to 79.5%, but had no major effect on the model’s textual entailment

recognition accuracy which hovered around 56-57%.

An analysis of the results shows that further gains in lexical entailment recognition

could be made in at least two ways. First, to enable the model to recognise when a

hypothesis word is entailed by another form of itself within the text, it may be beneficial

to apply stemming to the words of the text and hypothesis before calculating the lexical

56 CHAPTER FIVE: CONCLUSION

entailment probability between each pair of words. Second, instead of simply

estimating the ‘cut-off value,’ or prior probability that the hypothesis sentence is true,

by empirically tuning it to the data, it may be beneficial to estimate P(Trh=1) based on

the content of the hypothesis. One way to do this could be to vary P(Trh=1) with the

length of the hypothesis, since the entailment probability P(Trh=1|t) is estimated as the

product of the individual lexical entailment probabilities P(Tru=1|v) for each u∈h, and

therefore P(Trh=1|t) ן ch for some constant c. Another possibility might be to base

P(Trh=1) on the frequency of each u∈h within some corpus. All of these modifications to

the lexical entailment model might be interesting areas for future research.

However, the results of our tests also suggest that improving the Bar Ilan model’s

lexical entailment recognition ability will not lead to major gains in its textual

entailment recognition ability because lexical entailment recognition is only a part of

what a system would need to predict textual entailment accurately. Other

requirements of a textual entailment recognition system might include semantic

analysis, numerical analysis, and phrase-based lexical entailment recognition. Further

research into the textual entailment recognition task may focus on incorporating one or

more of these elements with the existing probabilistic lexical entailment model.

57

Appendix A: Stop Words

Following is the list of 50 stop words that were filtered out of the probabilistic lexical

entailment model.

the

of

and

to

a

in

that

is

it

was

for

on

be

with

I

he

as

by

you

at

are

this

not

have

had

his

from

but

they

which

or

an

were

her

she

we

there

been

their

one

has

will

can

all

would

do

if

more

when

who

59

Appendix B: Pseudocode for the Textual Entailment

Model

Function textualEntailmentModel(){

 READ input .xml file
 REPEAT{

 GET the next line

 IF the next line contains "<pair" {
 Set pair_id to the value of the id attribute in the line
 Set pair_value to the value of the value attribute in the line
 Set pair_task to the value of the task attribute in the line
 }
 ELSE IF the next line contains "<t>"{
 Erase all leading and trailing white space from the line
 Remove all instances of the characters ([{)]}"'`.,;:-!?
 Replace all digits with 0
 Convert all characters in the line to lowercase

 Create text array
 Set index to 0
 FOR each word in the remaining line {
 IF the stoplist does not contain the word {
 Set text(index) to that word
 Set index to index + 1
 }
 }
 }
 ELSE IF the next line contains "<h>" {
 Erase all leading and trailing white space from the line
 Remove all instances of the characters ([{)]}"'`.,;:-!?
 Replace all digits with 0
 Convert all characters in the line to lowercase

 Create hypothesis array
 FOR each word in the remaining line {
 IF the stoplist does not contain the word {
 Set hypothesis(index) to that word
 Set index to index + 1
 }
 }
 Create alignment array

Create scores array
 Set hypothesis_index to 0
 FOR each word in the hypothesis array {
 Set h_word to the current hypothesis word

 Set max to 0

60 APPENDIX B: PSEUDOCODE

 Set overall_score to 1
 Set align_word to NULL

 IF any word from the text array equals h_word {
 Set max to 1
 Set align_word to h_word
 }
 ELSE {

 FOR each word in the text array {
 Set t_word to the current text word
 IF LEP(h_word, t_word) > max {
 Set max to LEP(h_word, t_word)
 Set align_word to t_word
 }
 }
 }

 Set overall_score to overall_score * max
 Set scores(hypothesis_index) to max

 Set alignment(hypothesis_index) to align_word
 Set hypothesis_index to hypothesis_index + 1
 }
 }
 ELSE IF the next line contains "</pair>" {
 APPEND results to output file
 }
 }UNTIL the end of the input file is reached
}

61

Appendix C: Pseudocode for calculating LEPco(u,v)

Function LEPco(u,v){

 Set v_query to v

 IF u precedes v alphabetically
 Set uv_query to "u"+_+"v"
 ELSE
 Set uv_query to "v"+_+"u"

 IF cache contains v_query
 GET number of hits for v_query from cache
 Set denominator to hits
 ELSE
 Set v_hits to webSearch(v_query)
 Add (v_query, v_hits) to cache
 Set denominator to v_hits

 IF cache contains uv_query
 GET number of hits for uv_query from cache
 Set numerator to hits
 ELSE
 Set uv_hits to webSearch(uv_query)
 Add (uv_query, uv_hits) to cache
 Set numerator to uv_hits

 Set LEPuv = numerator / denominator

 RETURN LEPuv
}

63

Appendix D: Java code for counting word-feature

pairs

/***
 * PairCounts takes in the names of 2 files: a master count file, listing
 * words followed by a list of features they co-occur with and relevant
 * count; and a filenames list of parse files yet to be processed.
 *
 * It updates the master count file after each set of 10 parsed files.
 ***/

import java.io.*;
import java.util.regex.*;
import java.util.*;

public class PairCounts {

 public PairCounts() {
 }

 // the following ArrayList will be used to index all words
 private static ArrayList vocab;

 /** These Hashtables of ArrayLists will store the features applicable
 * to each word and the count of each word/feature pair. They will
 * share the same index so that the order of features in the
 * ArrayList for word1 stored in words2features will correspond to
 * the order of the counts in the ArrayList indexed by word1 stored
 * in words2wfcounts.
 */
 private static Hashtable words2features;
 private static Hashtable words2wfcounts;

 private static int total_feature_count;

 public static Pattern p = Pattern.compile("_\\d+");
 private static Pattern nonalphanum = Pattern.compile("[\\W&&[^-]]");
 private static Pattern num = Pattern.compile("\\d");

 public static void main(String[] args) {

 /***
 * Read args
 **/
 String wfpairsfile = args[0];

64 APPENDIX D: JAVA CODE

 String listfile = args[1];
 int groupsize=10;
 if (args.length > 2)
 groupsize = Integer.valueOf(args[2]);

 /***
 * Keep running program until the list of input
 * files is exhausted
 **/
 do {
 /***
 * Zero indexes
 **/
 System.out.println("Initialising index...");
 zero_indexes();

 /***
 * Read list of input files
 **/

 System.out.print("Reading input files...");
 ArrayList filenames = new ArrayList();

 try {
 BufferedReader fin =

 new BufferedReader(new InputStreamReader
 (new FileInputStream
 (listfile)));
 if (!fin.ready()) {
 System.out.println("End of file list reached");
 return;
 }

 while (fin.ready()) {
 String name = fin.readLine();
 filenames.add(name);
 }

 fin.close();
 }catch(IOException e) {
 System.out.println(e);
 }
 System.out.print("Done\n");

 /***
 * Get names of next (10) files to process
 **/
 int arraysize = 0;
 String[] filelist = new String[groupsize];
 for (int jj=0; jj<groupsize; jj++)
 if (!filenames.isEmpty()) {
 filelist[jj] = filenames.get(0).toString();
 filenames.remove(0);
 arraysize++;
 }

65

 /***
 * Process each of (10) files and update counts
 **/
 for (int jjj=0; jjj<arraysize; jjj++) {
 try {
 String currentfilename = filelist[jjj];
 // read in the parse file
 BufferedReader in =

new BufferedReader(new InputStreamReader
 (new FileInputStream
 (currentfilename)));
 System.out.println("Processing: " + currentfilename);
 System.out.println("Vocab size: " + vocab.size());

 if (!in.ready()) {
 System.out.println
 ("File " + currentfilename

 + " did not open");
 continue;
 }

 /***
 * Read in word/feature pairs
 **/
 // go through parsed results line-by-line
 while (in.ready()) {
 String line = in.readLine().toLowerCase();

 // ignore lines starting with <c> and containing

// s_0
 if (line.contains("<c>") || line.contains("s_0"))
 continue;
 // ignore blank lines
 if (!line.contains("("))
 continue;
 // ignore commented lines
 if (line.contains("#"))
 continue;

 // filter out the position markers like _13
 Matcher m = p.matcher(line);
 line = m.replaceAll("");

 // change all digits to 0
 Matcher m4 = num.matcher(line);
 line = m4.replaceAll("0");

 // filter out the opening and closing brackets
 line = line.substring(1,line.length()-1);

 String[] lineargs = line.split("\\s");
 for (int k=0; k<lineargs.length; k++)
 lineargs[k] = lineargs[k].trim();

66 APPENDIX D: JAVA CODE

 String GR, w1, w2, w1feature, w2feature;

 // ignore lines with less than 3 fields
 if (lineargs.length <3)
 continue;

 // if there are more than 3 fields, check GR type
 // and append optional fields to GR type, and then

// reduce all fields to the first three positions
// in the array

 if (lineargs.length > 3) {
 if (lineargs[0].equals("ncsubj") ||
 lineargs[0].equals("xsubj") ||
 lineargs[0].equals("csubj"))
 lineargs[0] = lineargs[0] + "." +

lineargs[3];

 else {
 lineargs[0] = lineargs[0]+ "." +

lineargs[1];
 lineargs[1] = lineargs[2];
 lineargs[2] = lineargs[3];
 }
 }

 // pull out GR, w1 and w2
 GR = lineargs[0];
 w1 = lineargs[1];
 w2 = lineargs[2];

 // Ignore words with non-alphanumeric characters
 Matcher m2 = nonalphanum.matcher(w1);
 if (m2.find()) {
 continue;
 }
 Matcher m3 = nonalphanum.matcher(w2);
 if (m3.find()) {
 continue;
 }

 // create two features - one for each word
 // D denotes that the word inside brackets was the
 // dependent in the original parse, whereas H
 // denotes that the word inside brackets was the
 // head in the original parse
 w1feature = "< " + GR + " " + w2 + " D >";
 w2feature = "< " + GR + " " + w1 + " H >";

/***

 * Add the two new features to the indexes

**/

 add_to_index(w1, w1feature, 1);
 add_to_index(w2, w2feature, 1);

67

 }
 in.close();
 System.out.print("Done\n");
 } catch (IOException e) {
 System.out.println(e);
 }

 /***
 * Write Word/Feature Counts to temporary file
 **/

 // make sure they come out in alphabetical order
 Collections.sort(vocab);
 System.out.print
 ("Writing word/feature counts to temporary file...");
 try {
 FileWriter wfpairs_out =
 new FileWriter("tempfile.txt");

 // Write total feature count
 wfpairs_out.write(total_feature_count+"\n");

 // for each word in vocab, write features and counts
 for (int t=0; t<vocab.size(); t++) {
 String thisword = vocab.get(t).toString();

 // write word
 wfpairs_out.write(thisword + " ");

 // write features and counts
 ArrayList currentfeaturelist =
 (ArrayList) words2features.get(thisword);
 ArrayList currentcountlist =
 (ArrayList) words2wfcounts.get(thisword);

 for (int q=0; q<currentfeaturelist.size(); q++) {

 String currentfeature =
 currentfeaturelist.get(q).toString();
 int paircount =
 Integer.valueOf
 (currentcountlist.get(q).toString());

 wfpairs_out.write(currentfeature + " "
 + paircount + " ");
 }
 wfpairs_out.write("\n");
 }
 wfpairs_out.close();
 } catch (IOException j) {
 System.out.println(j);
 }
 System.out.print("Done\n");
 }

68 APPENDIX D: JAVA CODE

 /**
 * Merge temporary counts file with large file
 ***/
 System.out.print("Merging files...");
 String[] mergeargs =
 {"tempfile.txt", wfpairsfile, "tempmergedfile.txt"};
 MergeCounts.main(mergeargs);

 // copy temporary merged file back to wfpairsfile
 try{
 BufferedReader tempin =

new BufferedReader(new InputStreamReader
 (new FileInputStream
 ("tempmergedfile.txt")));

 FileWriter tempout = new FileWriter(wfpairsfile);
 while (tempin.ready()) {
 String linein = tempin.readLine();
 tempout.write(linein+"\n");
 }
 tempin.close();
 tempout.close();
 }catch(IOException e){
 System.out.println(e);
 }
 System.out.print("Done\n");

 /**
 * Output remaining files to file list
 ***/
 System.out.print("Writing remaining files to file list..");
 try {
 FileWriter filenames_out =
 new FileWriter(listfile);
 if (filenames.size() > 1){
 for (int i=0; i<filenames.size(); i++)
 filenames_out.write

 (filenames.get(i).toString() + "\n");
 }
 filenames_out.close();
 filenames = null;
 } catch (IOException g) {
 System.out.println(g);
 }
 System.out.print("Done\n");
 }while (1==1);
 }

69

 /***
 * This function takes in a word and feature pair with count x and
 * adjusts the count of this word/feature pair in the Hashtables and
 * ArrayList accordingly.
 ***/
 private static void add_to_index(String word, String feature, int x) {

 // add x to the total feature count
 total_feature_count += x;
 // if the word is new, add it to the vocab list
 int i = vocab.indexOf(word);
 if (i == -1) {
 vocab.add(word);
 words2features.put(word, new ArrayList());
 words2wfcounts.put(word, new ArrayList());
 }
 // check whether the word/feature pair has been encountered yet
 ArrayList tempfeaturelist = (ArrayList) words2features.get(word);
 ArrayList tempcountlist = (ArrayList) words2wfcounts.get(word);
 int m = tempfeaturelist.indexOf(feature);
 // if it's new, add the feature to the word's ArrayList with

 // count of x
 if (m == -1) {
 tempfeaturelist.add(feature);
 tempcountlist.add(x);

 words2features.remove(word);
 words2features.put(word, tempfeaturelist);
 words2wfcounts.remove(word);
 words2wfcounts.put(word, tempcountlist);
 }
 // otherwise increase the feature's count by x
 else {
 int n = Integer.valueOf(tempcountlist.get(m).toString());
 n+=x;
 tempcountlist.remove(m);
 tempcountlist.add(m,n);

 words2features.remove(word);
 words2features.put(word, tempfeaturelist);
 words2wfcounts.remove(word);
 words2wfcounts.put(word, tempcountlist);
 }
 tempfeaturelist = null;
 tempcountlist = null;
 }
 private static void zero_indexes() {
 vocab = new ArrayList();
 words2features = new Hashtable();
 words2wfcounts = new Hashtable();
 total_feature_count = 0;
 }
}

71

Appendix E: Java code for calculating feature

weights

/***
 * MIWeights takes in the names of 2 files: one is the master list of
 * words followed by their features and counts; the other is a feature
 * index of features followed by their total count and wordset. It
 * processes these files to create an index of MI weights for word/feature
 * pairs with the format:
 *
 * word1 feature1 MIweight1 feature2 MIweight2 ...
 * word2 feature1 MIweight1 feature2 MIweight2 ...
 *
 ***/

import java.io.*;
import java.util.regex.*;
import java.util.*;
import java.lang.Math;

public class MIWeights {

 public MIWeights() {
 }

 // The following ArrayLists contain a list of features and their
 // respective total counts
 private static ArrayList features;
 private static ArrayList featurecounts;

 private static int total_feature_count;

 public static void main(String[] args) {

 // read in args
 String wfpaircountsfile = args[0];
 String featureindex = args[1];
 String MIweightsfile = args[2];

 // populate feature lists
 try {
 BufferedReader fin = new BufferedReader(new InputStreamReader
 (new FileInputStream
 (featureindex)));
 if (!fin.ready()) {
 System.out.println("featureindex file not ready");
 return;

72 APPENDIX E: JAVA CODE

 }
 System.out.println("Populating feature lists");

 features = new ArrayList();
 featurecounts = new ArrayList();

 // read in features and counts one at a time
 while (fin.ready()) {
 String line = fin.readLine();
 String[] lineparts = line.split(" ");

 String feature = lineparts[0] + " " + lineparts[1]
 + " " + lineparts[2] + " " + lineparts[3]
 + " " + lineparts[4];
 int count = Integer.valueOf(lineparts[5]);
 features.add(feature);
 featurecounts.add(count);
 System.out.println("Feature: "

+ feature + " Count: " + count);
 }
 fin.close();
 }catch (IOException e) {
 System.out.println(e);
 }
 // process wfpair counts file one line at a time and output
 // calculated MI weights to MI weights file
 try {
 BufferedReader wfin = new BufferedReader(new InputStreamReader
 (new FileInputStream
 (wfpaircountsfile)));
 if (!wfin.ready()) {
 System.out.println("wfpairs file not ready");
 return;
 }
 System.out.println("Reading from file: " + wfpaircountsfile);
 FileWriter weights_out =
 new FileWriter(MIweightsfile);

 // The first line of this file is the total feature count
 total_feature_count = Integer.valueOf(wfin.readLine());
 System.out.println("Total Feature Count: "

+ total_feature_count);

 int counter = 0;
 // read in words, features and counts one at a time
 while (wfin.ready()) {
 counter++;
 String line = wfin.readLine();
 String[] lineparts = line.split(" ");

 String word = lineparts[0];
 System.out.print(counter+" "+word+"...");
 weights_out.write(word + " ");

 ArrayList currentfeaturelist = new ArrayList();
 ArrayList currentfeaturecounts = new ArrayList();

73

 // read in word/feature pair counts
 for (int j=1; j<lineparts.length; j+=6) {
 String feature = lineparts[j] + " " +
 lineparts[j+1] + " " +
 lineparts[j+2] + " " +
 lineparts[j+3] + " " +
 lineparts[j+4];
 int count = Integer.valueOf

(lineparts[j+5].toString());
 currentfeaturelist.add(feature);
 currentfeaturecounts.add(count);
 }
 // calculate total count for the current word
 int cw = 0;
 for (int k=0; k<currentfeaturecounts.size(); k++)
 cw += Integer.valueOf
 (currentfeaturecounts.get(k).toString());

 // now, for each feature in the currentfeaturelist,
 // calculate the MI weight and store it in an ArrayList
 ArrayList currentfeatureweights = new ArrayList();
 for (int m=0; m<currentfeaturelist.size(); m++) {
 String f = currentfeaturelist.get(m).toString();
 int cf = Integer.valueOf(featurecounts.get
 (features.indexOf(f)).toString());
 int cwf = Integer.valueOf
 (currentfeaturecounts.get(m).toString());

 double weight = 0;

 // numerator = count(w,f) * total_feature_count
 double numerator = cwf * total_feature_count;

 // denominator = count(w) * count(f)
 double denominator = cw * cf;

 double intermediate = 1/denominator;
 intermediate = intermediate*cwf*total_feature_count;

 weight = Math.log(intermediate)/Math.log(2);
 currentfeatureweights.add(m, weight);
 }

 // print feature sum, and features w/ weights to file
 weights_out.write(cw + " ");
 for (int nn=0; nn<currentfeaturelist.size(); nn++) {
 double wt = Double.valueOf(currentfeatureweights.

get(nn).toString());
 if (!Double.isNaN(wt))
 weights_out.write

 (currentfeaturelist.get(nn).toString()
 + " " + wt + " ");

 }
 weights_out.write("\n");

74 APPENDIX E: JAVA CODE

 currentfeaturelist = null;
 currentfeaturecounts = null;
 currentfeatureweights = null;
 System.out.print("Done\n");
 }
 wfin.close();
 weights_out.close();
 }catch (IOException e) {
 System.out.println(e);
 }
 }
}

75

Appendix F: Java code for calculating LEPws

rankings

import java.io.*;
import java.util.*;

public class RankSims {

 // the active features list will be utilized for filtering out any
 // features with total count less than the feature_filter from the sim
 // calculation
 private static ArrayList activefeatures;
 private static int feature_filter = 10;

 // this filter will act to ignore any word/feature pairs with weight
 // less than the given amount
 private static int weight_filter = 4;

 private static ArrayList vocab;

 // This ArrayList holds the sums of all feature weights for each word
 // in the vocabulary. It shares its index with the vocab ArrayList.
 private static ArrayList featuresums;

 // the stopwords list contains the 50 most common words from the
 // corpus, plus '-'
 private static String[] stopwords = {"the","of","and","to","a","in",

"that","is","it","was","for","on","be","with","I","he","as","by",
"you","at","are","this","not","have","had","his","from","but",
"they","which","or","an","were","her","she","we","there","been",
"their","one","has","will","can","all","would","do","if","more",
"when","who","-"};

 // the stopfeatures list contains the 40 most common features from the
 // corpus in terms of inverse word frequency; all features in this
 // list occur with over 10,000 words
 private static String[] stopfeatures = {"< A:lex-mod:U - D >",

"< N:nn:N the D >","< N:lex-mod:U - D >","< N:nn:N of D >",
"< N:nn:N and D >","< N:nn:N a D >","< N:nn:N to D >",
"< N:nn:N the H >","< N:nn:N in D >","< N:nn:N and H >",
"< N:nn:N to H >","< N:nn:N with D >","< N:nn:N by D >",
"< N:nn:N in H >","< N:nn:N of H >","< N:nn:N for D >",
"< N:nn:N a H >","< N:nn:N as D >","< N:nn:N from D >",
"< N:nn:N that D >","< N:nn:N is D >","< N:nn:N on D >",
"< N:nn:N was D >","< N:nn:N at D >","< N:nn:N is H >",
"< N:mod:A the H >","< N:nn:N or D >","< N:nn:N was H >",
"< N:nn:N it D >","< N:nn:N be D >","< N:mod:A and H >",
"< N:nn:N that H >","< N:nn:N his D >","< N:nn:N he D >",
"< N:nn:N on H >","< N:nn:N are H >","< N:nn:N for H >",

76 APPENDIX F: JAVA CODE

"< N:nn:N an D >","< N:nn:N i D >","< N:mod:A of H >"};

 // the featurewords and featureweights Hashtables hold ArrayLists of
 // words and their weights respectively, indexed by feature
 private static Hashtable featurewords;
 private static Hashtable featureweights;

 public RankSims() {
 }

 /***
 * This function takes four arguments - the name of a word/feature
 * pairs weights file, the name of a feature index, the name of a
 * feature weights index, and the
 * name of the file to output the similarity scores to.
 *
 * It outputs a file with one word and its similarity scores
 * per line, in descending order of similarity.
 **/
 public static void main(String[] args) {

 // read in arguments
 feature_filter = Integer.valueOf(args[0]);

 weight_filter = Integer.valueOf(args[1]);

 String wfweightsfile = args[2];
 String featureindex = args[3];
 String featureweightsindex = args[4];
 String simsfile = args[5];

 // include a file to write featuresums out to
 String featuresumfile = args[6];

 // include the option to start from where we left off
 boolean start = true;
 String lastword = null;
 if (args.length >= 8) {
 lastword = args[7];
 start = false;
 }

 // include the option to read words we want the sim scores from
 // from a file
 String fileofwords = null;
 boolean readwordsfromfile = false;
 ArrayList wordlist = new ArrayList();
 if (args.length > 8) {
 readwordsfromfile = true;
 fileofwords = args[8];
 try {
 BufferedReader wordsin =

 new BufferedReader(new InputStreamReader
 (new FileInputStream
 (fileofwords)));
 System.out.println("Generating word list");

77

 while (wordsin.ready()){
 wordlist.add(wordsin.readLine().trim());
 }
 wordsin.close();
 }catch (IOException e) {
 System.out.println(e);
 }
 }

 // initialize vocabulary and feature sums lists
 vocab = new ArrayList();
 featuresums = new ArrayList();
 activefeatures = new ArrayList();
 featurewords = new Hashtable();
 featureweights = new Hashtable();

 // populate the active features list with all features whose count
 // is greater than the feature_filter
 getactivefeatures(featureindex);

 // populate vocab and featuresums lists from wfweights file
 getvocab(wfweightsfile, featuresumfile);

 // populate featurewords and featureweights hashtables from the
 // feature weight index file
 getfeaturelists(featureweightsindex);

 // calculate similarity scores for each word in the vocab, from
 // start of the file to finish
 try {
 BufferedReader fin2 = new BufferedReader(new InputStreamReader
 (new FileInputStream
 (wfweightsfile)));

 System.out.println("Calculating similarity scores");

 // for each word w...
 while (fin2.ready()) {
 String line = fin2.readLine();
 String[] lineparts = line.split(" ");

 String w = lineparts[0];
 if (!vocab.contains(w))
 continue;

 if (start == false) {
 if (w.equals(lastword)) {
 start = true;
 continue;
 } else
 continue;
 }

 if (readwordsfromfile == true) {
 if (!wordlist.contains(w))

78 APPENDIX F: JAVA CODE

 continue;
 }

 // remove the current word from the wordlist so we'll know
 // which words are left over at the end
 wordlist.remove(w);

 System.out.print(w + "...");

 int w_index = vocab.indexOf(w);

 // store w's feature sum locally
 double w_featuresum =
 Double.valueOf(featuresums.get(w_index).toString());

 // create array to hold the similarity scores for other
 // words v and set all values to 0 initially
 ArrayList simwords = new ArrayList();
 ArrayList simscores = new ArrayList();

 // create array to hold the featureweights for all similar

 // words locally
 ArrayList simsums = new ArrayList();

 // create arrays to hold w's active features and their
 // weights
 ArrayList wfeatures = new ArrayList();
 ArrayList wfeatureweights = new ArrayList();

 // for each feature f in F(w)...
 for (int i=2; i<lineparts.length; i+=6) {
 String f = lineparts[i] + " " +
 lineparts[i+1] + " " +
 lineparts[i+2] + " " +
 lineparts[i+3] + " " +
 lineparts[i+4];

 // make sure the feature is in the active feature list
 if (!activefeatures.contains(f))
 continue;

 double wf_weight =
 Double.valueOf(lineparts[i+5]);

 // make sure this feature's weight is higher than the

 // filter
 if (wf_weight<weight_filter||Double.isNaN(wf_weight))
 continue;

 wfeatures.add(f);
 wfeatureweights.add(wf_weight);
 }

 // Now, for each feature in wfeatures, find WS(f) and
 // update the similarity score between w and all
 // v(elem of)WS(f) get WS(f) for each feature in F(w)

79

 for (int j=0; j<wfeatures.size(); j++) {
 String feature = wfeatures.get(j).toString();
 double wfweight =
 Double.valueOf(wfeatureweights.get(j).toString());
 if (!featurewords.containsKey(feature))
 continue;
 ArrayList words =(ArrayList)featurewords.get(feature);
 ArrayList weights =

(ArrayList)featureweights.get(feature);
 System.out.println(w + " : " + feature);
 for (int k=0; k<words.size(); k++) {
 String v = words.get(k).toString();
 if (v.equals(w))
 continue;

 double vwt =

Double.valueOf(weights.get(k).toString());
 //int v_simscoresindex = vocab.indexOf(v);
 // find the word v in w's simscores index
 int v_simscoresindex = simwords.indexOf(v);
 if (v_simscoresindex == -1) {
 simwords.add(v);
 simscores.add(wfweight + vwt);
 simsums.add

(featuresums.get(vocab.indexOf(v)));

 } else {
 double score = Double.valueOf

(simscores.get
(v_simscoresindex).toString());

 score = score + wfweight + vwt;
 simscores.remove(v_simscoresindex);
 simscores.add(v_simscoresindex, score);
 }
 }
 words = null;
 weights = null;
 }

 // divide each value in the simscores array by
 // featuresum(w) + featuresum(v)
 System.out.println("Dividing sim values");
 for (int s=0; s<simwords.size(); s++) {
 Object v = simwords.get(s);

 double vfeaturesum = Double.valueOf

(simsums.get(s).toString());

 double score = Double.valueOf

(simscores.get(s).toString());
 score = score / (w_featuresum + vfeaturesum);
 simscores.remove(s);
 simscores.add(s, score);
 }

80 APPENDIX F: JAVA CODE

 // order simscores high to low, with the lowest being 0.04
 System.out.println("Ordering sim values");
 ArrayList inordersimwords = new ArrayList();
 ArrayList inordersimscores = new ArrayList();

 for (int t=0; t<simwords.size(); t++) {
 String word = simwords.get(t).toString();
 double sim = Double.valueOf

(simscores.get(t).toString());
 if (sim < 0.04)
 continue;
 if (inordersimwords.isEmpty()) {
 inordersimwords.add(word);
 inordersimscores.add(sim);
 } else {
 boolean added = false;
 for (int x=0; x<inordersimwords.size(); x++) {
 double current = Double.valueOf

(inordersimscores.get(x).toString());
 if (sim > current) {
 inordersimwords.add(x, word);
 inordersimscores.add(x, sim);
 added = true;
 break;
 }
 }
 if (added==false) {
 inordersimwords.add(word);
 inordersimscores.add(sim);
 }
 }
 }

 // print simscores over .04 to file
 System.out.println("Writing sim values to file");
 FileWriter printsims = new FileWriter(simsfile, true);
 printsims.write(w + " ");
 System.out.println(inordersimwords.size());
 for (int y=0; y<inordersimwords.size(); y++) {
 printsims.write(inordersimwords.get(y)

+ " " + inordersimscores.get(y) + " ");
 }
 printsims.write("\n");
 printsims.close();
 }
 fin2.close();
 }catch (IOException e) {
 System.out.println(e);
 }

 }

 private static void getactivefeatures(String featureindex) {
 try {
 /**
 * Begin by creating the active features list by reading

81

 * through the feature index and including any features with
 * total count less than the filter.
 ***/

 // read in the feature index file
 System.out.println("Reading features");
 BufferedReader featuresin =

new BufferedReader(new InputStreamReader
 (new FileInputStream
 (featureindex)));
 if (!featuresin.ready())
 throw new IOException();
 // put stop features in arraylist
 ArrayList stopfeaturelist = new ArrayList();
 for (int ii=0; ii<stopfeatures.length; ii++) {
 stopfeaturelist.add(stopfeatures[ii]);
 }
 // go through features line-by-line
 while (featuresin.ready()) {
 String line = featuresin.readLine();
 String[] lineparts = line.split(" ");

 String feature = lineparts[0] + " " + lineparts[1]

+ " " + lineparts[2] + " " + lineparts[3]
+ " " + lineparts[4];

 if (stopfeaturelist.contains(feature))
 continue;

 int featurecount = Integer.valueOf(lineparts[5]);

 if (featurecount >= feature_filter) {
 System.out.println(feature);
 activefeatures.add(feature);
 }
 }
 featuresin.close();
 System.out.println("Active feature list complete");
 } catch (IOException e) {
 System.out.println(e);
 }
 }

 // This function reads in the vocab from the miweights file and
 // calculates each word's feature sum from the active features. The
 // miweights file is already filtered to include only words for which
 // count(w) > 6.
 private static void getvocab

(String wfweightsfile, String featuresumfile) {

 // get all the vocab from the featuresums file
 try {
 System.out.println

("Populating vocab lists from feature sums file");
 BufferedReader sumsin =

82 APPENDIX F: JAVA CODE

new BufferedReader(new InputStreamReader

 (new FileInputStream
 (featuresumfile)));
 while (sumsin.ready()) {
 String line = sumsin.readLine();
 String[] lineparts = line.split(" ");
 String word = lineparts[0];

 boolean stop = false;
 for (int j=0; j<stopwords.length; j++) {
 if (word.equals(stopwords[j])) {
 stop = true;
 break;
 }
 }
 if (stop) continue;

 System.out.println(lineparts[0]);
 vocab.add(lineparts[0]);
 featuresums.add(lineparts[1]);
 }
 sumsin.close();
 }catch (IOException e) {
 System.out.println(e);
 }
 }

 // this function populates the featurewords and featureweights
 // hashtables
 private static void getfeaturelists(String featureweightsindex) {
 try {
 BufferedReader fwindex =

new BufferedReader(new InputStreamReader
 (new FileInputStream
 (featureweightsindex)));
 System.out.println

("Populating feature word and weight lists");
 while (fwindex.ready()) {
 String fline = fwindex.readLine();
 String[] flineparts = fline.split(" ");

 String feature = flineparts[0] + " "
 + flineparts[1] + " "
 + flineparts[2] + " "
 + flineparts[3] + " "
 + flineparts[4];
 if (!activefeatures.contains(feature))
 continue;
 System.out.println(feature);
 ArrayList words = new ArrayList();
 ArrayList weights = new ArrayList();
 for (int j=5; j<flineparts.length; j+=2) {
 String v = flineparts[j];

 // keep from including terms that are not in the vocab
 if (!vocab.contains(v))

83

 continue;

 double vwt = Double.valueOf(flineparts[j+1]);

 // check to make sure the weight of this feature
 // and v is larger than the weight filter
 if (vwt >= weight_filter) {
 words.add(v);
 weights.add(vwt);
 System.out.println(feature + " : " + v);
 }
 }
 featurewords.put(feature, words);
 featureweights.put(feature, weights);
 }
 fwindex.close();
 }catch(IOException e) {
 System.out.println(e);
 }

 }
}

85

Bibliography

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., et al. (2006).

The Second PASCAL Recognising Textual Entailment Challenge. Proceedings of the

Second PASCAL Challenges Workshop on Recognising Textual Entailment. Venice.

BNC Consortium. (2001). The British National Corpus, version 2 (BNC World).

Brown, P. F., Cocke, J., Della Pietra, S., Della Pietra, V. J., Jelinek, F., Lafferty, J. D., et

al. (1990). A statistical approach to machine translation. Computational

Linguistics, 16 (2), 79-85.

Chen, S. F., & Goodman, J. (1996). An Empirical Study of Smoothing Techniques for

Language Modeling. Proceedings of the 34th annual meeting on Association for

Computational Linguistics (pp. 310-318). Santa Cruz: Association for

Computational Linguistics.

Dagan, I. (2000). Contextual Word Similarity. In R. Dale, H. Moisl, & H. Somers (Eds.),

Handbook of Natural Language Processing (pp. 459-476). Marcel Dekker Inc.

Dagan, I., Glickman, O., & Magnini, B. (2006). The PASCAL Recognising Textual

Entailment Challenge. In Q.-C. e. al (Ed.), MLCW 2005, LNAI Volume 3944 (pp.

177-190). Springer-Verlag.

de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., & Sammons, M. (2005). An

inference model for semantic entailment in natural language. Proceedings of the

PASCAL Challenges Workshop on Recognising Textual Entailment.

Dolan, W. B., Quirk, C., & Brockett, C. (2004). Unsupervised construction of large

paraphrase corpora: Exploiting massively parallel news sources. Proceedings of the

20th international conference on Computational Linguistics (p. Article no. 350).

Geneva, Switzerland: Association for Computational Linguistics.

86 BIBLIOGRAPHY

Geffet, M., & Dagan, I. (2004). Feature vector quality and distributional similarity.

Proceedings of COLING 2004, (pp. 247-253). Geneva.

Geffet, M., & Dagan, I. (2005). The distributional inclusion hypotheses and lexical

entailment. Proceeding sof the 43rd Annual Meeting of the Association for

Computational Linguistics (ACL '05) (pp. 107-114). Ann Arbor, Michigan:

Association for Computational Linguistics.

Glickman, O. (2006, June). Applied textual entailment. Ph.D. thesis . Ramat Gan,

Israel: Bar Ilan University.

Glickman, O., & Dagan, I. (2005). A Probabilistic Setting and Lexical Cooccurrence

Model for Textual Entailment. Proceedings of the ACL Workshop on Empirical

Modeling of Semantic Equivalence and Entailment (pp. 43-48). Ann Arbor,

Michigan: Association for Computational Linguistics.

Glickman, O., Dagan, I., & Koppel, M. (2005). A Probabilistic Classificaiton Approach

for Lexical Textual Entailment. Twentieth National Conference on Artificial

Intelligence (AAAI-05). Pittsburgh, Pennsylvania: Association for the Advancement

of Artificial Intelligence.

Glickman, O., Dagan, I., & Koppel, M. (2005). Web based probabilistic textual

entailment. Proceedings of the PASCAL Recognising Textual Entailment Challenge

Workshop.

Harris, Z. S. (1954). Distributional structure. Word , 10 (23), 146-162.

Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical phrase-based translation.

Proceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology - Volume 1 (pp. 48-

54). Edmonton, Canada: North American Chapter of the Association for

Computational Linguistics.

Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical phrase-based translation.

Proceedings of the 2003 Conference of the North American Chapter of the Association

87

for Computational Linguistics on Human Language Technology - Volume 1 (pp. 48-

54). Edmonton, Canada: Association for Computational Linguistics.

Landis, J. R., & Koch, G. G. (1997). The measurements of observer agreement for

categorical data. Biometrics , 33, 159-174.

Lin, D. (1998). Automatic retrieval and clustering of similar words. Proceedings of

COLING-ACL98. Montreal.

Lin, D. (n.d.). Downloads. Retrieved August 22, 2007, from Dekang Lin's Home Page:

http://www.cs.ualberta.ca/~lindek/downloads.htm

Nielsen, R., Ward, W., & Martin, J. H. (2006). Toward dependency path based

entailment. Proceedings of the Second PASCAL Recognising Textual Entailment

Challenge Workshop. Venice.

Perez, D., & Alfonseca, E. (2005). Application of the Bleu algorithm for recognising

textual entailments. Proceedings of the PASCAL Challenges Workshop on

Recognising Textual Entailment.

Quirk, C., Brockett, C., & Dolan, W. B. (2004). Monolingual machine translation for

paraphrase generation. Proceedings of the 2004 Conference on Empirical Methods in

Natural Language Processing (pp. 142-149). Barcelona, Spain: Association for

Computational Linguistics.

Rennie, J. D. (2004, Febuary 19). Derivation of the F-measure. Retrieved August 2, 2007,

from MIT Computer Science and Artificial Intelligence Laboratory:

http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf

Roth, M. (2003, December 29). Java Sizeof(). Retrieved August 23, 2007, from Martin's

Java Notes: http://martin.nobilitas.com/java/sizeof.html

Tatu, M., & Moldovan, D. (2005). A semantic approach to recognizing textual

entailment. Proceedings of the PASCAL Challenges Workshop on Recognising

Textual Entailment.

88 BIBLIOGRAPHY

van Rijsbergen, C. J. (1979). Information Retrieval. London: Butterworths.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques (2 ed.). San Francisco: Morgan Kaufman.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Chapter One: Introduction
	1.1 The Textual Entailment Recognition task
	1.2 Objectives
	1.3 Structure

	Chapter Two: The Probabilistic Lexical Entailment Model
	2.1 The Probabilistic Setting
	2.2 Lexical Reference
	2.3 Limits of the Model
	2.4 Implementation
	2.4.1 Datasets
	2.4.2 Calculating P(Trh = 1|t)
	2.4.3 Calculating P(Trh = 1)

	Chapter Three: Lexical Entailment between Pairs of Words
	3.1 Lexical Entailment Probability Metrics
	3.1.1 Web-based Co-occurrence Metric
	3.1.2 Syntactic Feature Distributional Similarity
	3.1.3 Thesaurus-based Similarity

	3.2 Comparison of LEP Metrics
	3.2.1 Judgement Criteria
	3.2.2 Testing LEPco
	3.2.3 Testing LEPws
	3.2.4 Testing LEPthes
	3.2.5 Results
	3.2.4 Converting Similarity Metrics to Lexical Entailment Probabilities

	Chapter Four: Embedding the New Lexical Entailment Probability Metrics
	4.1 Smoothing
	4.2 Textual Entailment Recognition Accuracy
	4.3 Lexical Entailment Recognition Accuracy
	4.4 Discussion

	Chapter Five: Conclusion
	Appendix A: Stop Words
	Appendix B: Pseudocode for the Textual Entailment Model
	Appendix C: Pseudocode for calculating LEPco(u,v)
	Appendix D: Java code for counting word-feature pairs
	Appendix E: Java code for calculating feature weights
	Appendix F: Java code for calculating LEPws rankings
	Bibliography

