
 

 

 

 

INVESTIGATION OF THE PROBABILISTIC 

LEXICAL ENTAILMENT MODEL FOR 

RECOGNISING TEXTUAL ENTAILMENT 

 

 

 

Anne O’Donnell 

Supervised by Prof. Stephen Pulman 

 

 

 

MSc Dissertation 

Oxford University Computing Laboratory 

7 September, 2007 



 

 

 

 

 



 

Abstract 

 

Multiple natural language processing applications, including information retrieval, 

question answering, information extraction, and document summarisation, involve the 

task of identifying whether or not the meaning of a given sentence (called the 

hypothesis)  can be inferred from the truth of another similar sentence (called the text).  

This task is called recognising textual entailment.  Another simpler sub-task, called 

recognising lexical entailment, involves determining whether every lexical concept 

denoted by a word in the hypothesis is entailed by a lexical concept contained in the 

text.  The Bar Ilan probabilistic lexical entailment model, which was previously 

proposed for the textual entailment recognition task, aims to recognise textual 

entailment by solving the simpler lexical entailment recognition sub-task and using the 

lexical entailment relationship as an estimator for textual entailment.  This paper 

further examines the probabilistic lexical entailment model as a predictor of textual 

entailment.   

We attempt to improve the Bar Ilan model’s performance on both the lexical and textual 

entailment recognition tasks by replacing its mechanism for recognising the lexical 

entailment probability (LEP) between words with two more accurate LEP metrics.  The 

results show that while improving the accuracy of the LEP metric increased the model’s 

accuracy on the lexical entailment recognition sub-task from 64% to 79.5%, it did not 

produce a corresponding increase in textual entailment recognition accuracy.  This 

suggests that while there are a few adjustments which could be made to the Bar Ilan 

model to improve its lexical entailment recognition accuracy even further, greater gains 

in textual entailment recognition may come from combining the probabilistic lexical 

entailment model with other methods of semantic analysis.  
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Chapter One: Introduction 

 

1.1 The Textual Entailment Recognition task 

Human language is rich enough to express a single concept in countless ways.  One of 

the major challenges in getting computers to summarise, answer questions about, or 

extract information from natural language text is to enable the computer to recognise 

when two different pieces of text convey the same meaning.  For example, a multi-

document summarisation system might attempt to summarise two documents 

containing the sentences below1: 

Document 1:  “The International Atomic Energy Agency report detailing the 

discovery also faulted Tehran for not cooperating with the U.N. watchdog's 

attempts to investigate other suspicious aspects of Iran’s nuclear programme.”  

Document 2:  “Tehran did not cooperate with the U.N. watchdog's attempts to 

investigate suspicious aspects of Iran's nuclear programme.” 

The system must recognise that the two sentences convey the same concept and include 

this concept in its final summary.  Additionally, the system should be able to tell that 

                                                 

1 Sentence examples taken from the Third Recognising Textual Entailment Challenge dataset, 
available from http://www.pascal-network.org/Challenges/RTE3/.  
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the first sentence entails the second and therefore include the entailed sentence in the 

summary to prevent redundancy. 

Until a few years ago, this subtask of determining whether one textual statement could 

be inferred from another text fragment was addressed separately for each natural 

language processing application (Glickman, 2006).  A researcher attempting to judge 

the performance of this subtask in a Question Answering system, for example, could 

only do so by testing his subsystem against others that had been developed for Question 

Answering systems. Furthermore, advances in this subtask were rarely translated 

across applications.  For these reasons, the PASCAL Recognizing Textual Entailment 

(RTE) Challenge was introduced in 2004 to introduce textual entailment recognition as a 

generic applied and evaluated task for natural language processing researchers (Dagan, 

Glickman, & Magnini, 2006).  

The RTE task definition defines textual entailment as a directional relation between two 

text fragments called the text (the entailing text) and the hypothesis (the entailed text) 

as follows (Bar-Haim, et al., 2006):   

 

Definition 1:   We say that a text T textually entails a hypothesis H if, typically, a 

human reading T would infer that H is most likely true. 

 

This operational definition assumes common background knowledge and common 

human understanding of language. The definition is quite informal because it reflects 

the guidelines given to human annotators when manually judging entailment between 

pairs of sentences, a task which is somewhat uncertain given the variability of 

language. Nevertheless it has been shown that humans achieve a fairly high degree of 

agreement in judging entailment between sentence pairs.  The report on the Second 

Recognising Textual Entailment Challenge (RTE-2) (Bar-Haim, et al., 2006) says that in 

creating the RTE-2 dataset, the average agreement between each pair of manual 

annotators who shared at least 100 examples was 89.2%. The average Kappa score 
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between pairs of annotators was 0.78, indicating “substantial agreement” (Landis & 

Koch, 1997).  

 

Example Text Hypothesis Entailment 

Mexico City has a very bad pollution 
problem because the mountains around 
the city act as walls and block in dust 
and smog. 

Poor air circulation out of 
the mountain-walled 
Mexico City aggravates 
pollution. 

TRUE 1 

LaFarge was the one who helped Tiffany 
to make the Favrile glass, said 
auctioneer William Doyle who operates 
an auction house in Manhattan. 

William Doyle lives in 
Manhattan. FALSE 2 

More than 250 paintings commemorate 
the centennial of the Man Ray’s birth in 
Philadelphia. 

Man Ray was born in 
Philadelphia. TRUE 3 

The government announced last week 
that it plans to raise oil prices. Oil prices drop. FALSE 4 

The Philippines has begun pulling its 
troops out of Iraq, a move seemingly 
being made to satisfy demands by 
kidnappers of a Filipino hostage. 

Filipino soldiers are 
leaving Iraq. TRUE 5 

Figure 1. Textual entailment examples taken from the first Recognising Textual Entailment Challenge 

dataset. 

Figure 1 provides a few examples of text and hypothesis pairs developed for the first 

Recognising Textual Entailment Challenge (RTE-1) dataset.2  The participants in this 

challenge were provided with a development set of 567 sentence pairs and a test set of 

800 sentence pairs.  They came up with textual entailment recognition systems ranging 

in accuracy from 49.5% to 58.6% on the entire dataset (Glickman, 2006). The methods 

they used for judging textual entailment included semantic reasoning (Tatu & 

                                                 

2 http://www.pascal-network.org/Challenges/RTE/ 
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Moldovan, 2005), syntactic matching (de Salvo Braz, Girju, Punyakanok, Roth, & 

Sammons, 2005), and word overlap (Perez & Alfonseca, 2005) among others.   

One of the best scoring systems at RTE-1 was developed by a group from Bar Ilan 

University and used a probabilistic approach to solve the simpler sub-problem of lexical 

entailment (Glickman, 2006). Lexical entailment recognition – the process of 

determining whether a lexical concept represented by a word or phrase in the 

hypothesis is entailed by a word or words in the text – is a necessary, but not sufficient, 

criterion for textual entailment to exist (Glickman, Dagan, & Koppel, A Probabilistic 

Classificaiton Approach for Lexical Textual Entailment, 2005).  The Bar Ilan model 

attempted to establish whether lexical entailment held between the hypothesis and text 

and used this result as an estimate for the existence of a textual entailment relationship 

between the two.  It did so assuming a generative probabilistic model, similar to the 

generative models used successfully in other areas of natural language processing such 

as machine translation (Brown, et al., 1990).  The overall goal of this project is to 

further examine the probabilistic lexical entailment approach to recognizing textual 

entailment by attempting to improve the Bar Ilan model from RTE-1.   

 

1.2 Objectives 

The strong performance of the Bar-Ilan model at RTE1 suggests that the probabilistic 

lexical entailment approach holds promise for predicting textual entailment and 

warrants further investigation.  The main goal of this project was to improve the 

accuracy of the Bar Ilan model by building on the work of (Glickman, 2006).   

The Bar Ilan model created an alignment between words of the text and hypothesis 

such that each word in the hypothesis aligned with the word from the text which was 

most likely to have entailed it according to a lexical entailment probability metric.  The 

Bar Ilan model used a simple metric based on word co-occurrence frequency on the web 

to evaluate the probability of lexical entailment between pairs of words.  The main 

thrust of work in this project centred on implementing the probabilistic lexical 

entailment model with more accurate lexical entailment probability metrics in order to 
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see whether improving the accuracy of this subtask – recognising the lexical entailment 

relationship between pairs of words – would improve the entire model’s accuracy in 

predicting lexical and textual entailment. 

 

1.3 Structure 

The rest of this paper is organised as follows. Chapter Two describes the probabilistic 

lexical entailment model in more detail.  It gives an explanation of the probabilistic 

assumptions under which the Bar Ilan model operates and illustrates how the 

probabilistic model is used to predict the presence or absence of lexical entailment for an 

entire text and hypothesis pair.  The chapter finishes with a description of the model’s 

implementation for this project. 

Chapter Three explains the three lexical entailment probability metrics that were 

implemented for this project – the original web-based co-occurrence metric from the Bar 

Ilan model, a metric based on distributional similarity of syntactic features, and a third 

metric based on a pre-existing thesaurus.  The various metrics are judged and compared 

for accuracy. 

Chapter Four describes the process of embedding each of the three lexical entailment 

probability metrics within the overall probabilistic model.  We judge the performance of 

the system on the lexical and textual entailment tasks using each metric in order to see 

whether improved lexical entailment probability estimates lead to increased accuracy of 

the overall model.  The results show that replacing the simple web-based co-occurrence 

metric from the Bar Ilan model with the two more accurate metrics improves the 

model’s accuracy on the lexical entailment task but not on the textual entailment task.  

In Chapter Five we state the project’s conclusions and make suggestions for further 

research.
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Chapter Two: The Probabilistic Lexical Entailment 

Model 

 

One of the top performers at the first Recognising Textual Entailment Challenge was 

the system created by researchers at Bar Ilan University that estimated textual 

entailment by solving the simpler task of predicting lexical reference using a 

probabilistic model (Glickman & Dagan, 2005).  This project implements the Bar Ilan 

model following the guidelines set out in that paper.  Chapter Two paraphrases the 

descriptions of lexical reference and the underlying probabilistic model from (Glickman, 

2006) as background for the reader. It finishes with an explanation of how this model 

was implemented for this project using the Java programming language. 

 

2.1 The Probabilistic Setting 

Recognising textual entailment can be viewed as a probabilistic task.  For some 

text/hypothesis pairs, the presence or absence of a textual entailment relationship is 

certain. For example, given the text “Kate went for a swim at 6:00 last night” and the 

hypothesis “Kate swam yesterday evening,” it is definite that the text entails the 

hypothesis because they convey the same information. In other words, we can say that 

the text entails the hypothesis with probability of 1. On the other hand, for the text 
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“Kate did not swim last night” and hypothesis “Kate swam last night,” the probability 

that the text entails the hypothesis is 0 since the hypothesis negates the text.  Other 

text/hypothesis pairs have a less certain entailment relationship. The text “Kate goes 

swimming most evenings” definitely increases the probability that the hypothesis “Kate 

went swimming last night” is true, but it does not entail it necessarily. We can say that 

the probability that this last text entails the hypothesis is somewhere between 0 and 1. 

Because of the probabilistic nature of the textual entailment recognition task, the Bar 

Ilan model assumes a generative probabilistic setting.  The full model is described 

formally in (Glickman, 2006), but the main features are conveyed here to provide 

background for the reader. 

Let T signify the space of possible texts, and t ∈T a specific text. Let H denote the set of 

all possible hypotheses, and the hypothesis h ∈ H a propositional statement which can 

be assigned a truth value of 0 or 1.  The possible world w signifies a mapping from H to  

{ 0=false, 1=true } and is denoted by w : H  {0,1}.  It represents a specific state of 

affairs with concrete truth assignments for all possible propositions h ∈ H.  The set of 

all possible worlds is signified by W.   

The probabilistic generative model assumes that “texts are generated along with a 

concrete state of affairs” [author emphasis].  That is, when a source generates a text t, it 

also generates the set of truth assignments for all propositions h which relate to the 

text, and that set of truth assignments comprises the possible world w.  The truth 

assignments in w therefore do not reflect some abstract “real world” but only convey the 

truth or untruth of hypotheses h relating to t.  The probability of generating a truth 

assignment for a hypothesis h that is not at all related to the text is some prior P(h), 

and the probability of a given hypothesis h being true is higher than the prior when the 

related text supports the truth of h. (Glickman, 2006, pp. 53-55) 

Let the random variable Trh signify the truth value given to the hypothesis h in a given 

world w.  We use the statement Trh = 1 to denote the event that h is assigned the truth 

value of 1 or true.  For a text t, the variable t also denotes the event that the generated 

text is t. The definition of probabilistic textual entailment says that a text t 
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probabilistically entails a hypothesis h if t increases the likelihood of h being true. Using 

t ⇒h to denote the event that t probabilistically entails h, the formal definition is below 

(Glickman, 2006, p. 55): 

 

Definition 2:   For all t ∈ T and h ∈ H, t ⇒h  iff  P(Trh = 1|t) > P(Trh = 1).  

 

The Bar Ilan model uses this probabilistic setting as its basis for modelling textual 

entailment.  This reduces the problem to estimating ܲሺܶݎ ൌ 1ሻ and ܲሺܶݎ ൌ   .ሻݐ|1

 

2.2 Lexical Reference 

A common strategy in natural language processing is to simplify a complex task into a 

simpler subtask and to use the results of the subtask as an estimate for the result of the 

initial, complex task. The Bar Ilan model follows this strategy by breaking the task of 

textual entailment recognition into the easier subtask of lexical reference (Glickman, 

2006, p. 40): 

 

Definition 3:   A word W is lexically referred in a text T if there is an explicit or 

implied reference in T to a concept denoted by W.  

 

The Bar Ilan lexical entailment model uses lexical entailment to estimate ܲሺܶݎ ൌ   .ሻݐ|1

It assumes that a hypothesis h is true if and only if all its lexical components are true, 

and assigns a truth value to each word u in the hypothesis indicating the presence or 

absence of a lexical reference to u within the given text.   
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The probability that a given word u within the hypothesis is true is assumed to be 

independent of the probabilities of the other words being true, giving the following 

estimations for the probability of the truth of the complete hypothesis: 

 

ܲሺܶݎ ൌ ሻݐ|1 ൌ  ෑ ܲሺܶݎ௨ ൌ ሻݐ|1
௨א

 

    (2.1) 

ܲሺܶݎ ൌ 1ሻ ൌ  ෑ ܲሺܶݎ௨ ൌ 1ሻ
௨א

 

    (2.2) 

Furthermore, the model assumes an alignment between words of the hypothesis and 

words of the text such that each entailed hypothesis word is entailed by a specific word 

in the text.  Using Tv to denote the event that the word v appears within the text, this 

can be written mathematically as: 

 

ܲሺܶݎ௨ ൌ ሻݐ|1 ൌ  max
௩א௧

ܲሺܶݎ௨ ൌ 1| ௩ܶሻ 

     (2.3) 

Thus, by combining (2.1) and (2.3), we can obtain an overall estimate for ܲሺܶݎ ൌ  :ሻݐ|1

 

ܲሺܶݎ ൌ ሻݐ|1 ൌ  ෑ  max 
௩א௧

 ܲሺܶݎ௨ ൌ 1| ௩ܶ
௨א

ሻ 

   (2.4) 

We denote as LEP(u,v) the lexical entailment probability between words u and v, which 

is the same thing as ܲሺܶݎ௨ ൌ 1| ௩ܶሻ: 
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,ݑሺܲܧܮ ሻݒ ൌ  ܲሺܶݎ௨ ൌ 1| ௩ܶሻ 

(2.5) 

Combining Equation 2.4 and Equation 2.5 with Definition 2, we derive the complete 

probabilistic lexical entailment model as used by the Bar Ilan model and which was 

implemented for this project: 

 

Definition 4.  For all t∈T and h∈H, the probabilistic lexical entailment model 

determines the lexical entailment relationship between t and h as 

 

ሺݐ ⇒ ݄ሻ   ุ   ෑ  max 
௩א௧

,ݑሺܲܧܮ ሻݒ
௨א

   ܲሺܶݎ ൌ 1ሻ 

The Bar Ilan model uses a simple co-occurrence frequency metric to estimate LEP(u,v) 

and empirically tunes a single cut off value λ to estimate ܲሺܶݎ ൌ 1ሻ.  

 

2.3 Limits of the Model 

Lexical reference is generally a prerequisite for textual entailment to hold, but a textual 

entailment relationship does not necessarily hold wherever a lexical entailment 

relationship is present.  This is apparent if one considers the text “John is not at home” 

and the hypothesis “John is at home.”  The hypothesis is definitely lexically entailed by 

the text as every word in the hypothesis is also present in the text, but the meanings of 

the sentences are contradictory and therefore textual entailment is clearly false.  

Nevertheless, lexical entailment is a fairly good predictor of the textual entailment 

relationship.  This was shown by (Glickman, 2006), in which the relationship between 

lexical and textual entailment was investigated in detail. Manual annotators judged a 
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set of text and hypothesis pairs from the RTE-1 development dataset for lexical and 

textual entailment.  The experiment showed that a system which judged lexical 

entailment perfectly would achieve 69% accuracy on the textual entailment task (with 

67% precision and 69% recall); in other words, the lexical and textual relationships 

matched up in 69% of sentence pairs.   Thus a system that implements the probabilistic 

lexical entailment model perfectly should only hope to be about 69% accurate in 

predicting textual entailment. 

 

2.4 Implementation 

For this project we implement the probabilistic lexical entailment model using the Java 

programming language and following the guidelines given in (Glickman, Dagan, & 

Koppel, 2005).  The objective of the implemented model is to be able to determine, given 

a text sentence and a hypothesis sentence, whether the text entails the hypothesis. 

2.4.1 Datasets 

The RTE-1 organisers created a large dataset of text and hypothesis pairs for training 

and testing textual entailment recognition systems.  Each pair has been manually 

judged for the textual entailment relationship.  The dataset, available for download 

online,3 includes a development set of 567 pairs (283 TRUE and 284 FALSE for 

entailment) and a test set of 800 pairs (400 TRUE and 400 FALSE).  We use these 

datasets for training and testing our implementation of the Bar Ilan probabilistic lexical 

entailment model. 

2.4.2 Calculating P(Trh = 1|t) 

The process of predicting the textual entailment relationship has two main steps. First, 

the program must estimate the probability that the hypothesis is true given the 

 

3 http://www.pascal-network.org/Challenges/RTE/Datasets/ 
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existence of the text: P(Trh = 1|t). Then, to determine whether the text actually entails 

the hypothesis, the system must compare the resulting value to the prior probability 

that the hypothesis is true on its own: P(Trh = 1). 

The program receives as input an .xml file containing text and hypothesis sentences in 

the format specified by the RTE-1 datasets.  In this format, text and hypothesis 

sentences are denoted by the tags <t> and <h> respectively.  A <pair> tag indicates the 

values of the attributes id (a numerical value identifying the sentence pair), value 

(indicating the existence or non-existence of the textual entailment relationship, as 

judged by human annotators), and task.4   

 
<pair id="1977" value="TRUE" task="PP"> 
 <t>His family has steadfastly denied the charges.</t> 
 <h>The charges were denied by his family.</h> 
</pair> 

Figure 2. Example of input data format taken from the RTE-1 development dataset. 

The model’s first intermediate task is to calculate the probability that the hypothesis is 

true given the text, ܲሺܶݎ ൌ  ,<ሻ, as in Equation 2.4.  We begin by removing the <pairݐ|1

<t>, and <h> tags and deleting leading and trailing white space. We then convert all 

digits to 0, remove punctuation characters, and convert everything to lowercase.  

At this point we remove words that belong to a pre-determined stop list comprising the 

50 most common words from our training corpus, a roughly 20 million token subset of 

the British National Corpus (BNC Consortium, 2001) (See Appendix A).  The reasons for 

using a stop list are twofold.  First, the web-based co-occurrence lexical entailment 

probability estimate that we will embed within the model tends to assign 

inappropriately high similarity scores to common words. Second, the words in the stop 

 

4 The RTE-1 dataset labels sentence pairs according to the text processing application that 
created them for comparison. The labels include Comparable Documents (CD), Machine 
Translation (MT), Information Extraction (IE), Reading Comprehension (RC), Paraphrase (PP), 
Information Retrieval (IR), and Question Answering (QA). This project did not consider task 
labels.  
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list are common determiners, auxiliary verbs, conjunctions, and prepositions that rarely 

have an impact on the overall meaning of the phrase; they do not make up the ‘meat’ of 

the sentences they are in. Finally, we split what remains of the text and hypothesis at 

white space and put each sentence into its own array. 

Once the text t and hypothesis h are in arrays, we simply go through the hypothesis 

words u∈h one at a time to find the value of  max 
௩א௧

,ݑሺܲܧܮ  ,ሻ. For each hypothesis word uݒ

we first check whether any word from the text v∈t is equal to u.  If this is the case we 

align the equivalent words and say that  max 
௩א௧

,ݑሺܲܧܮ ሻݒ ൌ 1.  If none of the words v∈t 

matches u, then we find the word v∈t that returns the highest value for LEP(u, v).  The 

function LEP(u, v) implements one of the three lexical entailment probability metrics to 

be explained in Chapter 3.  Once we calculate  max 
௩א௧

,ݑሺܲܧܮ  ሻ for each word u∈h, weݒ

multiply the results to obtain ܲሺܶݎ ൌ  ሻ.  A pseudocode version of the algorithm isݐ|1

given in Appendix B. 
 

The output of this program serves two purposes. First, for each sentence pair we must 

be able to extract the estimated value of ܲሺܶݎ ൌ  ሻ along with the manually annotatedݐ|1

value of the textual entailment relationship (TRUE or FALSE) in order to evaluate the 

accuracy of the system.  Second, to aid in later analysis, the program should output the 

alignments produced between the text and hypothesis along with the individual values 

for LEP(u, v).  Figure 4 shows the output format, which is similar to the input format 

except that the text and hypothesis now contain only the words which appeared in the 

text and hypothesis arrays, and two new tags are added.  The results tag <r> gives the 

alignment produced by the model in the format <p> u v LEP(u,v) </p> for each 

hypothesis word, where u is a hypothesis word and v is the text word aligned with u.  

The score tag <s> tells which lexical entailment probability model was used (web-based 

co-occurrence (CO), syntactic feature distributional similarity (WS), or thesaurus 

(THES)) and gives the estimate for ܲሺܶݎ ൌ  .ሻݐ|1
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<pair id="1977" task="PP" value="TRUE"> 
 <t> family steadfastly denied charges </t> 
 <h> charges denied family </h> 
 <r> 
  <p> charges charges 1.0 </p> 
  <p> denied denied 1.0 </p> 
  <p> family family 1.0 </p> 
 </r> 
 <s model="CO" score="1.0"> 
</pair> 

Figure 3. Example of output data format containing results of processing the input in Figure 2. 

 

2.4.3 Calculating P(Trh = 1) 

Once the program has calculated a value for the probability that the hypothesis is true 

given the text, ܲሺܶݎ ൌ ݎሻ, it must compare this with ܲሺܶݐ|1 ൌ 1ሻ to see whether the 

text actually increases the probability that the hypothesis is true in accordance with 

Equation 2.4.  The Bar Ilan model does this by empirically tuning a value for ܲሺܶݎ ൌ 1ሻ 

and classifying only sentence pairs for which ሺ ሻݐ|1   ܲሺܶݎ ൌ 1ሻ as entailing.   ܲ ݎܶ ൌ

In order to empirically tune the value for ܲሺܶݎ ൌ 1ሻ we use the Weka data mining 

software (Witten & Frank, 2005) to run the C4.5 decision tree algorithm on the scores 

from our training dataset. The C4.5 classification algorithm (called J48 in Weka) takes 

in our data with two attributes – score for ܲሺܶݎ ൌ  ሻ as calculated by our model andݐ|1

value of TRUE or FALSE as manually judged.  By creating a decision tree with just one 

node, it determines the cut-off score λ which maximises the information gain when all 

pairs for which ܲሺܶݎ ൌ  ሻ > λ are classified as TRUE and all others are classified asݐ|1

FALSE.  

Finally, using λ = ܲሺܶݎ ൌ 1ሻ, we can test the accuracy of our model in predicting textual 

entailment by running our model on the test set and classifying the results based on 

whether ܲሺܶݎ ൌ ሻݐ|1  ܲሺܶݎ ൌ 1ሻ. 
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Chapter Three: Lexical Entailment between Pairs of 

Words 

 

As mentioned earlier, the Bar Ilan model uses a very simple co-occurrence frequency 

metric to estimate the lexical entailment probability between pairs of words.  The task 

of calculating similarity between words has already been researched as a separate 

subtask quite extensively, as in the papers (Lin, Automatic retrieval and clustering of 

similar words, 1998), (Geffet & Dagan, 2004), and (Geffet & Dagan, 2005). In those 

papers the words are compared based on their shared syntactic features rather than 

simply their co-occurrence.  A third method of judging similarity between words is to 

use a pre-existing thesaurus.  One might expect the two latter similarity models to be 

more accurate at picking substitutable words than the web-based co-occurrence 

frequency estimate, and indeed our experiments in this chapter show this to be the case.  

Here we give an explanation and comparison of the three LEP metrics and their 

implementation for this project.  The next chapter will explain how each performed 

when embedded within the probabilistic lexical entailment model.  
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3.1 Lexical Entailment Probability Metrics 

The lexical entailment probability (LEP) estimate is the piece of the probabilistic lexical 

entailment model which determines which (if any) word from the text most probably 

entails a given word from the hypothesis.   The main goal of this project is to improve 

the Bar Ilan model’s accuracy in predicting lexical and textual entailment by replacing 

its LEP estimate with two other, more accurate LEP metrics. This section describes the 

web-based co-occurrence frequency estimate from the Bar Ilan model as well as the 

syntactic feature distributional similarity and thesaurus-based similarity estimates 

that we implement for this project. 

 

3.1.1 Web-based Co-occurrence Metric 

The RTE-1 Bar Ilan model estimates the probability that one word entails another 

using simple document co-occurrence frequency counts from the web.  The formula is: 

ܧܮ ܲሺݑ, ሻݒ ൌ  
݊௨,௩

݊௩
 

(3.1) 

where nu,v represents the number of hits from a web search for ‘u AND v’ and nv 

represents the number of hits from a web search for ‘v’ (Glickman, 2006, p. 62).  

This unsupervised estimate is based on the probabilistic model from Chapter 2.1, 

assuming that documents in a corpus (the web) are generated by a language source. The 

language source generates each text, or web page, along with the hidden possible world 

that constitutes truth assignments for propositions (hypotheses) about that text.  The 

metric makes the simple assumption that words which are stated verbatim in the text 

are true, and all other words are false.  Thus, the lexical entailment probability 

LEP(u,v) = P(Tru = 1|Tv) (2.5) is estimated as the probability that u appears in a 

document given that the word v appears:  
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ܲሺܶݎ௨ ൌ 1| ௩ܶሻ ൎ ܲሺ ௨ܶ| ௩ܶሻ 
(3.2) 

In practice this estimate is calculated using maximum likelihood counts from the 

corpus, deriving Equation 3.1 (Glickman, Dagan, & Koppel, 2005).  

In order to implement this LEP metric for our project we use the Alexa Web Search 

Service5 which allows us to submit and receive results from the Alexa web search 

engine from within a Java programme.  A variety of other web search APIs exist but we 

use Alexa for this project because it does not place a limit on number of queries per day 

(unlike the Yahoo! Web Search Services which limit queries to 5000 per day6) and it 

enables us to extract the number of hits for a web search (unlike the Google AJAX 

Search API which limits the number of results returned).  This flexibility comes with a 

cost, however; the Alexa Web Search Service, which is run by Amazon Web Services, 

charges $0.00030 per request. This makes it necessary to carefully limit the number of 

calls to the web search engine and to maintain a cache of previous queries to avoid 

duplicates.  

To calculate ܧܮ ܲሺݑ,  ሻ it is necessary to know the number of hits for ‘v’ and the numberݒ

of hits for ‘u AND v’.  The implementation of the function for this project first checks the 

cache to see whether either query has already been made.  Since ‘u AND v’ returns the 

same number of hits as ‘v AND u’, we always search for the pair of terms in alphabetical 

order.  If either one of the results is not in the cache, we perform a web search and add 

the resulting hits to the cache. Finally we divide nu,v by nv to calculate ܧܮ ܲሺݑ,  ሻ.  Aݒ

pseudocode description of the algorithm is in Appendix C. 

 

5 http://aws.amazon.com/alexawebsearch 

6 The RTE-1 development and test datasets include 7,310 distinct words and 56,877 distinct 
word pairings, not including stop words. Processing these files alone would have taken nearly 13 
days. Furthermore, calculating the accuracy of the co-occurrence metric required comparing each 
of 10 random nouns to an entire vocabulary which could only be limited to about 20,000 words; 
performing these queries would have taken 40 days. 
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3.1.2 Syntactic Feature Distributional Similarity 

The second lexical entailment probability metric is a word similarity measure proposed 

in (Lin, 1998) and tested in (Geffet & Dagan, 2004) for its ability to predict lexical 

entailment.  The metric is based on the distributional similarity scheme, following from 

the Harris distributional hypothesis (Harris, 1954) which says that words that occur 

within the same context tend to have similar meanings.   

As in (Geffet & Dagan, 2004), the metric constructs a weighted feature vector to 

characterise each word w. Features, made up of a word with which w co-occurs and the 

grammatical relationship between them, are extracted from a corpus parsed for 

grammatical dependencies.  Following the notation from (Lin, 1998), we represent 

grammatical dependencies from the parsed corpus by the triple (w,r,w’) where r stands 

for the grammatical relationship between w and w’ (i.e. obj, subj, nmod,det etc) and we 

represent features by the triplet <w,r, direction > in which direction indicates whether 

w is the head word or dependent word in the grammatical relationship.   Thus the 

dependency triple (w,r,w’) translates to two separate word-feature pairs denoted as 

(w,f).  They are (w, <w’,r,D>) and (w’, <w,r,H>).  

Once word-feature pairs have been extracted from the corpus, the metric applies a 

weighting function to calculate the weight for each feature f within each word’s vector. 

In this case we use the Mutual Information (MI) weighting function (Lin, 1998) (Dagan, 

2000), defined by: 

,ݓሺܫܯ ݂ሻ ൌ  logଶ
ܲሺݓ, ݂ሻ

ܲሺݓሻܲሺ݂ሻ
 

(3.3) 

where P(w,f) gives the probability that a random word-feature pair picked from the 

corpus is (w, f), P(w) gives the probability of w occurring within the corpus, and P(f) 

gives the probability of f occurring in the corpus.  If we denote as |w,f| the frequency 

count of the word-feature pair (w, f) and use * as a wildcard, we can estimate the MI 

measure using frequency counts from the parsed corpus as follows: 
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,ݓሺܫܯ ൏ ,ݒ ,ݎ ܦ ሻ ൌ  logଶ

,ݓ| ൏ ,ݒ ,ݎ ܦ  |
| כ,כ |

כ,ݓ| |
| כ,כ | ൈ | ,כ ൏ ,ݒ ,ݎ ܦ  |

| כ,כ |
ൌ  logଶ

,ݓ| ൏ ,ݒ ,ݎ ܦ  | ൈ | כ,כ |
כ,ݓ| | ൈ | ,כ ൏ ,ݒ ,ݎ ܦ  |

 

(3.4) 

Once weighted feature vectors have been constructed for each word, the syntactic 

feature distributional similarity metric calculates the similarity between words by 

applying a similarity function to the words’ vectors.  Once again this project adopts the 

similarity function used in both (Lin, 1998) and (Geffet & Dagan, 2004), where F(w) 

denotes the set of active features wi in the feath ture vector of w: 

,ݓሺ݉݅ݏ ሻݒ ൌ  
∑ ,ݓሺܫܯ ݂ሻ  ,ݒሺܫܯ  ݂ሻאிሺ௪ሻתிሺ௩ሻ

∑ ,ݓሺܫܯ ݂ሻאிሺ௪ሻ   ∑ ,ݒሺܫܯ ݂ሻאிሺ௩ሻ
 

(3.5) 

We use sim(w,v) directly as the lexical entailment probability estimate, assuming that if 

two words share all the same features, they will lexically entail each other: 

ܧܮ ௪ܲ௦ ൌ ,ݓሺ݉݅ݏ  ሻݒ

(3.6) 

Calculating the syntactic feature distributional similarity between two words is a four 

step process.  The first step is to actually parse the corpus with a parser that can extract 

dependency relationships. For this project we use the Minipar7 dependency parser on a 

portion of the British National Corpus (BNC Consortium, 2001) consisting of roughly 20 

million tokens.  Minipar outputs grammatical relationship triplets one per line as 

below: 
 
culture N:mod:A popular 

Figure 4. Example of Minipar grammatical relationship triplet. 

                                                 

7 http://www.cs.ualberta.ca/~lindek/minipar.htm 
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In this implementation, the BNC is split into thousands of files, and the Minipar parser 

outputs one parsed file for each BNC input file. 

Once we have the corpus parsed for grammatical relationships, the second step is to 

extract and count the word-feature pairs from the grammatical relationship triplets 

produced by the parser.  Performing this procedure the naïve way, by maintaining a 

count for each encountered word-feature pair in memory, would require a very large 

amount of RAM. As a rough estimation, consider that our parsed corpus produced 

nearly 10 million distinct word-feature pairs.  If we store an integer for the count of 

each word-feature pair, and an integer takes 16 bytes of memory in Java, this means 

that maintaining the counts alone for each word-feature pair in memory would take 

about 160MB. Furthermore, as the list of word-feature pairs grew larger, searching for a 

particular word-feature pair in order to increase its count would take an increasingly 

long time. To make the process more efficient, we implement the word-feature pair 

counting step as a two part process.  First we count the word-feature pairs for a small 

chunk of the parsed corpus (10 files at a time), and then we combine these counts with a 

master list of counts using a merge algorithm.  A shortened pseudocode description of 

the algorithm is in Figure 5, and the full Java code is in Appendix D. 

The output of this step is a large alphabetical file of word-feature pair counts in the 

format below, with one word and its set of features per line. 
word <feature1>  count1 <feature2> count2 ... 

The total count of word-feature pairs, or |*,*|, is also recorded in the first line of the 

file. 
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Function PairCounts(){ 
  Load parsed_file_list 
  WHILE length(parsed_file_list)>0 { 
    Initialise counts 
    Put names of next 10 files from parsed_file_list into queue 
    FOR each file in queue{ 
      DO{ 
        Read in next line containing word1, relationship, word2 

  Set word1_feature to <word2, relationship, D> 
        Set word2_feature to <word1, relationship, H> 
    
        Add 1 to count(word1, word1_feature) 
        Add 1 to count(word2, word2_feature) 
   Add 2 to total_pair_count    
      
      } UNTIL the end of the file is reached 
    } 
    Write total_pair_count to tempCountsFile 
    FOR each word { 
      Output features and counts to tempCountsFile 
    } 
    Set masterCountsFile to MergeCounts(tempCountsFile, masterCountsFile) 
    Delete queue files from parsed_file_list 
  } 
} 
 
Function MergeCounts(temp, master){ 
  Open temp 
  Open master 
  Create outfile 
  IF master is empty 
    Copy temp to outfile 
  
  ELSE { 
    Set combinedCount = totalFeatureCount(temp)+totalFeatureCount(master) 
    Write combinedCount to outfile 
   
    WHILE (length(temp)>0 && length(master)>0) { 
      IF nextWord(temp) < nextWord(master) { 
        Write nextLine(temp) to outfile 
     
        Set temp = rest(temp) 
      } 
      ELSE IF nextWord(master) < nextWord(temp) { 
        Write nextLine(master) to outfile 
     
        Set master = rest(master) 
      } 
      ELSE IF nextWord(master) == nextWord(temp) { 
        Combine feature counts from nextLine(master) and nextLine(temp) 
        Write combined line to outfile 
     
        Set temp = rest(temp) 
        Set master = rest(master) 
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      } 
    } 
    IF length(master) > 0 
      Copy rest of master to outfile 
    IF length(temp) > 0 
      Copy rest of temp to outfile 
   
    RETURN outfile 
 }} 

Figure 5. Pseudocode algorithm for counting word-feature pairs. 

At this point we also create a file called the feature index by re-organising the pair 

counts file. The purpose of the feature index is to speed up later processing by enabling 

feature counts and word-feature pair counts to be indexed by feature. It contains an 

alphabetical list of features with their total counts in the parsed corpus, followed by a 

list of individual words with which the feature co-occurs and their counts. The format is: 
 
<feature> feature_count word1 count1 word2 count2 ... 

 

The third step toward calculating the syntactic feature distributional similarity is to 

construct a raw feature vector for each word by calculating the weight of each feature in 

its vector.  We denote as Fraw(w) the set of features that are in this initial feature vector, 

and it includes all features with which w co-occurs in the corpus.  The process is 

straightforward and follows Equation 3.4, making use of the feature index to quickly 

reference the count for each feature, |*,f|.  The Java code is in Appendix E.   

The output of the third step is a large alphabetical file of words w followed by the set of 

features and weights for f∈Fraw(w) for which MI(w,f) > 0, with the format: 
 
w <f1> MI(w, f1) <f2> MI(w, f2) ... 

Once a weighted feature vector has been constructed for each word, we can calculate 

LEPws(u,v) for any two words u and v by applying the sim function from Equation 3.5 to 

their vectors.  Like the authors of (Geffet & Dagan, 2004) we do not use the raw feature 

vectors as produced by the previous step.  Instead we apply filtering techniques to get 

rid of rare and low-weight features and produce a vector of active features, F(w). 

 



24           CHAPTER THREE:  LEXICAL ENTAILMENT BETWEEN PAIRS OF WORDS 

 

 

Optimally, a feature’s weight relative to the other feature weights within a word’s 

vector should reflect that feature’s importance in characterising the word.  As pointed 

out in (Geffet & Dagan, 2004), the function ܫܯሺݓ, ݂ሻ ൌ logଶ
ሺ௪,ሻ

ሺ௪ሻሺሻ (Equation 3.4) tends 

to assign inappropriately high weights to rare features.  This affects the calculation of 

sim(u,v) when u and v share rare features that are not important in characterising 

those words but nevertheless cause the words to have a high similarity score.  To 

combat this problem we filter out features that occur less than 10 times in the corpus.  

The feature frequency threshold of 10 was arrived at after informally experimenting 

with different feature filters ranging from 0 to 20.  Coincidentally this is the same 

threshold that the authors of (Geffet & Dagan, 2004) used for their paper, which makes 

sense considering that their corpus was of a similar size (18 million tokens versus our 

20 million). 

We also filter out features that have a weight of less than 4.0.  This is because low-

weight features within a word’s feature vector are not important in characterising the 

word but add noise to the similarity calculation.  As with the feature frequency filter we 

experimented with several values for the feature weight filter and again arrived at the 

same threshold that was used in (Geffet & Dagan, 2004).  

To calculate sim(u,v) in this implementation we first consult the feature index created 

earlier to compile a list of active features, ignoring those features with frequency less 

than 10.  Then, when comparing the feature vectors for u and v we only consider 

features that appear on the active features list and that have a weight greater than 4.0.  

The pseudocode description of the implementation is in Figure 6. 
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Function LEPws(u,v) { 
 
  Open feature index 
  FOR each feature in the feature index { 
    IF count(feature) > 10 
      Add feature to valid_features 
  } 
  FOR each f in F_raw(u) { 
    IF valid_features contains f { 
      IF weight(u,f)>4{ 
        Add f to F(u) 
        Add weight(u,f) to feature_sum(u) 
      } 
    } 
  } 
   
  Set numerator to 0 
  FOR each f in F_raw(v) { 
    IF valid_features contains f { 
      IF weight(v,f)>4 { 
        add weight(v,f) to feature_sum(v) 
        IF F(u) contains f 
          Add (weight(u,f) + weight(v,f)) to numerator 
      } 
  } 
   
  Set sim = numerator / (feature_sum(u) + feature_sum(v)) 
  RETURN sim 
} 

Figure 6. Pseudocode explaining implementation of LEPws(u,v) 

 

3.1.3 Thesaurus-based Similarity 

In the paper (Geffet & Dagan, 2004) the authors report that the syntactic feature 

distributional similarity measure just explained achieves about 54% precision in 

predicting lexical entailment among the top-10 most similar words that it assigns to a 

given random noun.  The purpose of this project is to see whether replacing the web-

based co-occurrence metric LEPco with more accurate LEP metrics in the Bar Ilan 

model will improve the model’s overall accuracy.  While 54% precision is better than one 

might initially expect the LEPco metric to achieve, it is still not terribly accurate. For 

this reason we consider a third estimate for lexical entailment probability based on a 
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pre-existing thesaurus which was generated by Dekang Lin, a computational linguistics 

researcher at the University of Alberta and author of (Lin, 1998)8. 

The Lin thesaurus lists vocabulary words followed by up to 200 of their most similar 

words and a similarity score between 0 and 1.  This makes it very easy for our program 

to calculate LEPthes(u,v) by simply searching for word v among word u’s top 200 most 

similar word list, and using the similarity score that follows directly as the result for 

LEPthes(u,v). 

 

3.2 Comparison of LEP Metrics 

The main objective of this project is to determine whether replacing the co-occurrence 

LEPco metric from the Bar Ilan model with more accurate estimates for P(Tru = 1|Tv) 

will improve the model’s overall accuracy in predicting lexical and textual entailment.  

Therefore we must first determine whether the proposed LEPws and LEPthes metrics are 

indeed more accurate at predicting lexically entailing word pairs than the LEPco 

estimate.  

 

3.2.1 Judgement Criteria 

To test each LEP estimate’s accuracy we follow the procedure that was used in (Geffet & 

Dagan, 2004) to test the accuracy of LEPws.  For each of the three LEP metrics we 

randomly pick 20 nouns (which occur more than 50 times in the corpus) and calculate 

the top-40 highest scoring words for each noun.  (Only 10 random nouns were tested for 

the web-based co-occurrence metric to limit calculation costs; see Chapter 3.1.1 for an 

explanation.)  Then two independent judges manually judge the resulting word pairs for 

 

8 The thesaurus is available online from (Lin, Downloads).  
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lexical entailment.  Finally we calculate the precision of each LEP metric for its top-10, 

top-20, top-30, and top-40 most similar words.  

The judges determine whether lexical entailment holds between word pairs by testing 

for a relationship termed meaning entailing substitutability.  This criterion, introduced 

in (Geffet & Dagan, 2004), identifies whether some context exists in which one word 

from the pair can be substituted for the other in a sentence while retaining the 

sentence’s meaning.  For example, in the sentence We ate pizza for lunch, we can 

substitute the word food for pizza and retain the sentence’s meaning, so the meaning 

entailing substitutability relationship holds for the word pair pizza-food.  Meaning 

entailing substitutability is a rigorous indicator of lexical entailment.  

 

3.2.2 Testing LEPco 

To test our implementation of LEPco we chose a set N of 10 random nouns and a 

vocabulary V.  Because of the cost involved with using the Alexa Web Search service it 

was necessary to carefully limit V by first retrieving the number of hits for all the words 

which occurred more than six times in our corpus (of which there were 144,412) and 

then limiting V to only words which had 300,000 or more hits on the web. This reduced 

the list to 76,912 vocabulary words.  For each u∈N and v∈V we calculated LEPco(u, v), 

the probability that v entailed u, and LEPco(v, u), the probability that u entailed v.  

Compiling a list of the top scores with the associated word v for each u produced an 

initial ranked list of the most likely entailed or entailing words for each u∈N.   

Two problems with the initial list were immediately apparent. The first problem was 

that the top 30 or so most similar words for every word u had very high positive LEPco 

scores. This was a result of the Alexa web search engine using stop words which 
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returned very few hits.  For example, at the time of testing9 the Alexa search engine 

treated at as a stop word, so the number of hits for the query ‘at’ was 10 and the number 

of hits for ‘at AND university’ was 126,692,000. Thus LEPco(university,at) = 

126,692,000/10 = 12,669,200.  For this reason we deleted from our entailing words list 

all words with scores greater than 1. 

The second problem which surfaced was that the LEPco metric assigns inappropriately 

high scores to common words.  Consider the word the, which appears within most 

documents on the web.  For any other word u, the number of hits for ‘u AND the’ is 

going to be very close to the number of hits for ‘u’ and LEPco(the,u) will be very close to 

1.  To correct this problem we applied the same stop list that we used in the 

probabilistic lexical entailment model (Chapter 2.4.2) and deleted these stop words from 

our ranked list of entailing words.  After applying these two corrections, we added the 

top-40 words for each noun in N to our list of word pairs for evaluation. 

 

3.2.3 Testing LEPws 

To test the implementation of LEPws we took a set N of 20 random nouns and a 

vocabulary V and found the top 40 words v∈V as calculated by LEPws (u, v).  In the 

interest of limiting processing time we controlled V somewhat by only considering words 

v∈V that appeared more than six times in the corpus.   

We call R(n) the set of related words to n and it is defined as the set of words 

:ܸ∋ݒ ሺ݊ሻܨ ת ሻݒሺܨ ്  Instead of comparing the vector for each n∈N to the vector for  .

each v∈V, one pair of words at a time, we followed an algorithm which enabled us to 

consider only word pairs (n, v) : v ∈ R(n).  This required the creation of a feature weight 

index, similar to the feature index created for an earlier step, which listed each feature 

 

9 At the time of writing, the Alexa web search engine appears to have stopped using stop words. 
A more recent search for ‘at’ returned 99,540,437 hits. 
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followed by its word set WS(f) of words for which f was an active feature. This had the 

format: 
<f> w1 MI(w1,f) w2 MI(w2,f) ... 

To compile the list of top-ranked similar words for noun n, we went through n’s vector of 

active features, F(n), one at a time.  We filtered out inactive features using the feature 

frequency and weight filters which were explained in Chapter 3.1.2.  For each f∈F(n), 

we pulled WS(f) from the feature weight index. Then, for each v∈WS(f) such that v ≠ n 

and MI(v,f) > weight filter, we added v to R(n) if it wasn’t there already and started a 

running numerator total for v to which we added MI(n,f)+MI(v,f).  Finally, once we had 

run through n’s entire set of active features, we divided the running numerator total for 

each v∈R(n) by ∑ ,ሺ݊ܫܯ ݂ሻאிሺሻ   ∑ ,ݒሺܫܯ ݂ሻאிሺ௩ሻ .   

It should also be noted that in compiling the list of active features F(n) for each noun n, 

it was advantageous to exclude from F(n) a list of stop features containing the 40 most 

common features from the corpus in terms of inverse word frequency.  Each of the stop 

features occurred with over 10,000 different words in the corpus.  Including these 

common features would have made R(n) extremely large, and because P(f) was so large 

for these frequent features, their MI weight tended to be small for every word they 

occurred with.  Filtering them out of F(n) eliminated a lot of unnecessary processing. 

A diagram depicting the relationship between n, F(n), and R(n) is in Figure 7.  A solid 

line in the diagram between a word w and a feature f indicates that MI(w,f) > 4.0. Also, 

all the features f∈F(n) have frequency greater than 10 and are not part of the stop 

feature list.   
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Figure 7. Diagram depicting the relationship between n, F(n), R(n), and WS(f). 

A pseudocode description of the whole algorithm is below, and the entire Java code is in 

Appendix F. 
 
Function RankLEPws(N){ 
  FOR each n in N { 
    FOR each f in F_raw(n) { 
      IF (count(f)>10 && MI(n,f)>4 && f not elem of stop feature list) { 
        FOR each v in WS(f) { 
          IF MI(v,f) > 4 { 
            IF R(n) contains v 
              Add MI(n,f) + MI(v,f) to tally(v) 
            ELSE 
              Add v to R(n) 
              Set tally(v) to (MI(n,f) + MI(v,f)) 
          } 
        } 
      } 
    } 
    FOR each v in R(n), score(v)=tally(v)/(feature_sum(n)+feature_sum(v)) 
    Order R(n) by score(v), descending 
    Write top-40 R(n) to output file 
  } 
} 

Figure 8. Pseudocode description of algorithm used to calculate top-40 words for random nouns as 

evaluated by LEPws. 
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3.2.4 Testing LEPthes 

No extra calculations were required to compile the top-40 most similar words for our 20 

nouns as judged by LEPthes because the Lin thesaurus already listed these nouns 

followed by a ranked list of their most similar words.  All that was necessary was to 

extract the appropriate lists from the Lin thesaurus file. 

 

3.2.5 Results 

Figure 7 lists the top-20 highest scoring words for the noun policy as determined by 

each of the three LEP metrics.  Words that do not have a lexical entailment relationship 

with policy are marked with an asterisk.  

 
LEPco LEPws LEPthes

1 *policyholder 0.843 1 policies 0.156 1 strategy 0.223 
2 *privacy 0.819 2 *management 0.121 2 law 0.217 
3 *independent 0.760 3 strategy 0.112 3 economic policy 0.209 
4 *devious 0.754 4 *trade 0.111 4 foreign policy 0.207 
5 protectionism 0.750 5 *issues 0.107 5 reform 0.203 
6 *vaults 0.750 6 *development 0.103 6 measure 0.203 
7 *us 0.742 7 *research 0.099 7 stance 0.198 
8 *deviations 0.725 8 plan 0.097 8 plan 0.197 
9 *identifiable 0.710 9 *government 0.097 9 regulation 0.194 
10 *disclose 0.683 10 law 0.097 10 *principle 0.186 
11 *about 0.675 11 process 0.097 11 legislation 0.186 
12 *constitutes 0.673 12 *within 0.097 12 rule 0.184 
13 *macroeconomic 0.667 13 *education 0.096 13 program 0.182 
14 *contact 0.661 14 *upon 0.096 14 *proposal 0.176 
15 *democracies 0.650 15 *matters 0.095 15 *action 0.170 
16 *brawl 0.649 16 *uk 0.095 16 *guideline 0.170 
17 *cloze 0.646 17 *expenditure 0.094 17 initiative 0.168 
18 *deviant 0.643 18 *value 0.092 18 *decision 0.167 
19 *insurer 0.643 19 *resources 0.092 19 *development 0.164 
20 *defamatory 0.643 20 *sector 0.091 20 *effort 0.163 

Figure 9. Top 20 most probably entailed or entailing words for the noun policy for each LEP metric. 
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A quick glance at this table shows that the web-based co-occurrence LEPco metric has 

the most words without a lexical entailment relationship to policy listed among its top-

20, while the LEPthes metric has the most actually entailing words in its list.  This 

suggests that the LEPthes metric is more accurate at judging lexical entailment between 

words than LEPco and LEPws. 

The result of manual testing by the two independent judges supports this suggestion.  

Calculating the top-40 most similar words for the 20 random nouns with the LEPthes and 

LEPws metrics and for the 10 random nouns with the LEPco metric produced a total of 

1960 independent word pairs. These pairs were randomly split between the two judges 

and manually judged for the presence of a textual entailment relationship.  Each judge 

also tested 50 pairs from the other’s list, so that a total of 100 word pairs were judged by 

both judges in order to assess their agreement.  In the few cases where the two judges 

disagreed, the author made a judgement as a tiebreaker.  

The table below shows the precision values for the top-10, 20, 30, and 40 highest scoring 

words as judged by each of the annotators.  

 

LEPco LEPws LEPthes 

 Judge 1 Judge 2 Total Judge 1 Judge 2 Total Judge 1 Judge 2 Total 

Top 10 .189 .151 .180 .475 .333 .405 .815 .766 .786 

Top 20 .167 .160 .165 .361 .282 .319 .795 .713 .745 

Top 30 .174 .179 .177 .303 .263 .280 .729 .645 .679 

Top 40 .161 .179 .168 .285 .235 .257 .689 .581 .631 

Figure 10. Precision values for Top-10/20/30/40 words as judged by each of three LEP metrics. 

The results show that LEPthes performed significantly better than LEPco or LEPws at all 

Top-N levels.  It consistently achieved 46 or more percentage points of precision higher 

than LEPco and 37 or more percentage points higher than LEPws.  Both LEPws and 

LEPthes produced 800 word pairs, but 530 of the 800 pairs produced by LEPthes were 

judged a9s entailing versus only 216 of the 800 produced by LEPws.   
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The judges showed fairly high agreement on their mutually judged pairs.  Overall they 

agreed on 89 of 100 pairs.  For the 11 pairs on which they disagreed, Judge 1 believed 

that 5 were entailing and Judge 2 believed that 6 were entailing.  The associated Kappa 

value is 0.768, indicating ‘substantial agreement’ (Landis & Koch, 1997). A confusion 

matrix that shows the distribution of their mutually judged pairs is in Figure 11. 

 

  Judge 1 

  TRUE FALSE Total 

TRUE 33 6 39 

Ju
dg

e 
2 

FALSE 5 56 61 

Total 38 62 100 

Figure 11. Confusion matrix for two judges' assessment of a sample of word pairs. 

 

3.2.4 Converting Similarity Metrics to Lexical Entailment Probabilities 

One may notice that the lexical entailment probability scores for LEPws and LEPthes in 

Figure 7 are much lower than we would expect the actual probabilities to be.  For 

example, we have LEPthes(policy, law) = 0.217, even though one might expect these two 

words to entail one another in more than 21.7% of contexts.  For the purposes of this 

project, the disparity between the calculated lexical entailment probability and the 

actual entailment probability is not important.  What matters are the relative lexical 

entailment probabilities of different words – i.e. that entailing word pairs have higher 

scores than non-entailing word pairs.  This is because we judge a sentence pair for 

lexical entailment based on the relationship of ܲሺܶݎ ൌ ݎሻ to ܲሺܶݐ|1 ൌ 1ሻ, and we tune 

ܲሺܶݎ ൌ 1ሻ empirically from the data. So if LEP estimates are uniformly lower than 

actual lexical entailment probabilities between words, the overall value of 

ܲሺܶݎ ൌ ݎሻ will be low as well.  But since we tune ܲሺܶݐ|1 ൌ 1ሻ to fit the data, we should 

still be able to find a value of ܲሺܶݎ ൌ 1ሻ that separates entailing from non-entailing 
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sentences as long as entailing word pairs are uniformly ranked higher than non-

entailing word pairs. 



 

 

 

 

Chapter Four: Embedding the New Lexical 

Entailment Probability Metrics 

 

In this section we train the probabilistic lexical entailment model on the RTE-1 

development dataset and test it on the RTE-1 test dataset, embedding each of the three 

LEP metrics in turn.  Analysis of the results shows that while replacing the web-based 

co-occurrence LEP metric from the Bar Ilan model with the more accurate syntactic 

feature distributional similarity and thesaurus based metrics does not improve the 

model’s ability to predict textual entailment, it does cause the model to perform better 

in the lexical entailment recognition task.  This chapter describes and presents the 

results of our experiments. 

 

4.1 Smoothing 

One of the main differences between the LEPco metric and the other two is that the 

LEPco metric is capable of calculating a similarity score for any pair of words, while the 

LEPws estimate can only calculate similarities for words that share syntactic features 

and the LEPthes metric can only calculate similarities for word pairs listed within the 

thesaurus.  This affects the textual entailment model’s alignment when the model 

encounters a hypothesis word h that is not comparable to any of the text words.  We 

35 
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cannot just say that the lexical entailment probability for such words is 0 because the 

overall entailment probability for the sentence is the product of the maximum LEP 

values for each word, and an LEP of 0 for one word would bring down the probability of 

the entire sentence.  Therefore it is necessary to incorporate smoothing into the model to 

come up with an LEP score for hypothesis words that have no comparable words from 

the text.  This is similar to using smoothing in bigram models to calculate probabilities 

for unseen bigrams. 

For this project we adopt a simple smoothing method, based on the additive smoothing 

technique for bigram modelling, which assumes that each unseen bigram occurs once 

(Chen & Goodman, 1996).  This is generally not a strong smoothing method but we use 

it nonetheless for the sake of simplicity and because it aligns with our probabilistic 

setting, which says that the probability of generating some hypothesis h totally 

unrelated to the text is some prior P(h).   

In this case we assume that the LEP for incomparable hypothesis words is some small 

constant .  In testing I experimented with several values of  for both the LEPthes and 

LEPws metrics.  The reason for testing with several values is that there must be a large 

enough difference between possibly-entailing words (i.e. words for which a LEP can be 

calculated) and completely incomparable words to reflect the actual fact that the lexical 

entailment probability for incomparable words is very low.  On the other hand we 

cannot make the LEP for incomparable words so low that one incomparable hypothesis 

word destroys the entailment probability of an entire sentence.  So in this 

implementation we substituted the values  = {0.001, 0.01, 0.02} to test across a small 

range of orders of magnitude. 

 

4.2 Textual Entailment Recognition Accuracy 

The RTE-1 development and test datasets described in Chapter 2.4.1 are manually 

annotated for the textual entailment relationship.  This makes it straightforward to test 

the Bar Ilan model’s accuracy in predicting textual entailment by first tuning the cut-off 
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value λ based on the annotated values and calculated entailment probability scores from 

the development dataset.  We then use the empirically tuned value of λ to classify each 

sentence pair in the test dataset based on its calculated entailment probability.  Finally 

we check the classification of the test data against the manually annotated entailment 

relationship values to determine the model’s overall accuracy.  

After implementing the smoothing measure, I ran the textual entailment model on the 

RTE-1 development dataset once using LEPco and three times each for LEPthes and 

LEPws, substituting a different smoothing value  (0.001, 0.01, and 0.02) in each trial. 

After each run of the model on the development dataset, I fed the resulting scores and 

their pre-judged entailment values for all sentence pairs to the Weka software which 

empirically tuned λ using the C4.5 algorithm. The following table displays the resulting 

values for λ and the accuracy of each model on the training data.  It shows that the 

LEPws metric was the best at classifying the training data in terms of percent of 

correctly classified sentences by a very small margin, and that all models had a high 

occurrence of false positives. 

 

 λ Percent 
Correct 

True 
Positives 

False 
Positives 

True 
Negatives 

False 
Negatives Metric 

LEPco  .000517 55.9083 261 228 56 22  

0.001 .000018 57.3192 202 161 123 81 
LEPws 0.01 .000075 57.50 219 176 108 64  

0.02 .000192 56.875 215 173 111 68 
0.001 7.73E-11 56.9665 264 225 59 19 

LEPthes 0.01 .00008 56.9665 222 183 101 61  

0.02 .00016 56.9665 222 183 101 61 

Figure 12. Calculated cut-off values and performance of the Bar Ilan model on the textual entailment 

recognition task, using the RTE-1 development dataset (567 sentence pairs). 

I then tested each model’s performance on the test data by classifying each sentence 

pair within the test dataset based on the model’s associated cut-off value λ.  The model 

read in the calculated entailment probabilities for each sentence pair in the test dataset, 

and classified sentence pairs for which P(Trh=1|t) ≤ λ as FALSE and the rest as TRUE. 

The results are shown in the table on the next page. 
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LEPco   457  
(57.125%) 

343  
(42.875%) 370 313 87 30 

TRUE .925 .783 .542 .925 .683 
FALSE .218 .075 .744 .218 .337 

LEPws  

0.001 453  
(56.625%) 

347  
(43.375%) 294 241 159 106 

TRUE .735 .603 .550 .735 .629 
FALSE .398 .265 .600 .398 .478 

0.01 460 
(57.50%) 

340  
(42.5%) 317 257 83 143 

TRUE .793 .643 .552 .793 .651 
FALSE .358 .208 .633 .358 .457 

0.02 455  
(56.875%) 

345  
(43.125%) 311 256 144 89 

TRUE .778 .640 .549 .778 .643 
FALSE .360 .223 .618 .360 .455 

LEPthes  

0.001 455  
(56.875%) 

345  
(43.125%) 369 314 86 31 

TRUE .923 .785 .54 .923 .681 
FALSE .215 .078 .735 .215 .333 

0.01 450 
(56.25%) 

350  
(43.75%) 307 257 143 93 

TRUE .768 .643 .544 .768 .637 
FALSE .358 .233 .606 .358 .450 

0.02 450 
(56.25%) 

350 
(43.75%) 307 257 143 93 

TRUE .768 .643 .544 .768 .637 
FALSE .358 .233 .606 .358 .450 

Figure 13. Performance of the Bar Ilan model on the textual entailment recognition task; RTE-1 test dataset (800 sentence pairs). 
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Looking at the results table, the first thing that is noticeable is that the more accurate 

LEP metrics did not produce more accurate textual entailment models overall.  The 

‘least accurate’ LEP metric, LEPco, did better than the ‘most accurate’ metric, LEPthes, 

and nearly as well as the best LEPws model in terms of the percentage of sentences it 

classified correctly as textually entailing or non-entailing.  Furthermore, the LEPws and 

LEPthes models were just about even in terms of correctly classifying sentence pairs, 

even though LEPthes was more accurate than LEPws at picking entailing word pairs as 

discussed in Chapter 3.2.5.  By a slim margin, the best of the seven models was the one 

that used LEPws with =0.01.  It correctly classified 57.5% of sentence pairs, with a 

recall of .793 and precision of .552 on the TRUE pairs and recall of .358 with precision of 

.633 on the FALSE sentence pairs. 

The second thing that jumps out is that the vast majority of errors for all models were 

false positives. Every model was overwhelmingly biased toward classifying sentences as 

entailing.  This can be explained by looking at the data visualisation output from the 

Weka software. Figure 14 shows a plot of similarity scores, with sentence pairs 

classified as FALSE in red and TRUE pairs in shown in blue.  The data is scattered for 

better visibility. 

The figure shows that there is no apparent distinction in similarity score for TRUE and 

FALSE sentence pairs.  One would expect that a system which effectively separated 

TRUE and FALSE sentences by similarity score would show a large cluster of blue data 

points toward the top right of the figure, and a cluster of red points in the bottom left.  

As it stands there is no obvious cut-off point; red and blue points are mixed together for 

all score values.  This is why the models could not set a cut-off value λ that effectively 

separated TRUE from FALSE sentence pairs. 
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4.3 Lexical Entailment Recognition Accuracy 

One possible reason why embedding more accurate LEP metrics did not produce more 

accurate textual entailment systems overall could be that the more accurate LEP 

estimates did not improve the model’s performance on the lexical entailment recognition 

subtask either.  We therefore conduct a second round of tests to see whether this is the 

case, or whether we can rule it out.  

There was no pre-annotated dataset for the lexical entailment relationship so it was 

necessary to create one.  To do this I took a portion of the RTE-1 dataset containing 200 

sentence pairs and manually judged each for the lexical entailment relationship.  To 

perform the manual annotation I ignored stop words (from Appendix A) in the text and 

hypothesis, and for each word h in the hypothesis, I checked to see whether h was 

lexically entailed by a single word from the text.  If all the hypothesis words were 

lexically entailed, then the sentence was lexically entailed and the sentence pair given 

the value TRUE.  If even one hypothesis was not lexically entailed by a word from the 

text, the entire sentence pair was given the value FALSE for the lexical entailment 

relationship.  When judging word pairs for lexical entailment I used the meaning 

entailing substitutability criterion discussed in Chapter 3.2.1.  I also judged any word 

pair that consisted of different forms of the same word (i.e. liked, likes; ran, running; 

tree, trees; Iran, Iranian) as entailing.   

With the annotated lexical entailment dataset I tuned cut-off values for each of the 7 

entailment models, including all combinations of LEP metric and smoothing constant , 

using the Weka software.  This time I used the same entailment probability scores 

calculated by each of the models as before but instead of using the textual entailment 

values I used the new lexical entailment values for classification.  Since I did not have 

separate development and test sets, it was necessary to do a 10-fold cross-validation to 

come up with accuracy measurements for each model.  Also, when tuning the cut-off 

values, the decision trees created by the C4.5 algorithm had more than one node for 
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LEPco   .03735 128 
(64%) 

72 
(36%) 79 40 49 32 

TRUE .712 .449 .664 .712 .687 
FALSE .551 .288 .605 .551 .576 

LEPws

0.001 .00590 144 
(72%) 

56 
(28%) 75 20 69 36 

TRUE .676 .225 .789 .676 .728 
FALSE .775 .324 .657 .775 .711 

0.01 5.865E-4 145 
(72.5%) 

55 
(27.5%) 77 21 68 34 

TRUE .694 .236 .786 .694 .737 
FALSE .764 .306 .667 .764 .712 

0.02 .001714 145 
(72.5%) 

55 
(27.5%) 77 21 68 34 

TRUE .694 .236 .786 .694 .737 
FALSE .764 .306 .667 .764 .712 

LEPthes  

0.001 7.468E-5 159 
(79.5%) 

41 
(20.5%) 90 20 69 21 

TRUE .811 .225 .818 .811 .814 
FALSE .775 .189 .767 .775 .771 

0.01 7.468E-4 148 
(74%) 

52 
(26%) 87 28 61 24 

TRUE .784 .315 .757 .784 .770 
FALSE .685 .216 .718 .685 .701 

0.02 .001494 153 
(76.5%) 

47 
(23.5%) 86 22 67 25 

TRUE .775 .247 .796 .775 .785 
FALSE .753 .225 .728 .753 .740 

Figure 15. Performance of the Bar Ilan model on the lexical entailment recognition task, using the author-annotated dataset of 200 sentence pairs, with 

testing done using 10-fold cross validation. 
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most models with this dataset.  I used the DecisionStump algorithm instead. The 

DecisionStump is basically a decision tree limited to one node. The results are shown in 

the table in Figure 15. 

As the table shows, the Bar Ilan model correctly classified more sentence pairs for the 

lexical entailment recognition task than it did for recognising textual entailment in 

every case.  Furthermore, embedding more accurate LEP metrics corresponded with 

overall higher accuracy on the lexical entailment task. Recall that the LEPco metric 

achieved a precision of only 18% for its top ten highest scoring word pairs in the tests in 

Chapter 3.2.5, while the LEPws metric achieved 40.5% precision and the LEPthes metric 

did the best with 78.6%. When embedded within the Bar Ilan model, these metrics 

produced 64%, 72.5%, and 79.5% correctly classified sentence pairs respectively on the 

lexical entailment recognition task.  This shows that models with more accurate metrics 

for recognising entailing word pairs within the alignment model produced better overall 

lexical entailment recognition at the sentence level. 

The numbers of false positives and false negatives were more balanced for every model 

than they were in the textual entailment recognition task, where false positives were 

overwhelmingly more common. For the LEPco and LEPthes metrics the number of false 

positives was slightly higher than the number of false negatives, while for the LEPws 

metric it was the other way around.  Overall the strongest model was the one that used 

LEPthes with =0.001.  It classified 79.5% of the sentence pairs correctly, with recall of 

.811 and precision of .818 for the TRUE pairs and recall of .775 with precision of .767 on 

the FALSE sentence pairs. 

The reason why the improved LEP metrics led to improved lexical entailment 

recognition can be seen by examining the word alignment produced on a sentence pair 

by each of the three metrics. Figure 16 shows an example sentence pair from the RTE-1 

dataset and the various alignments produced by each LEP metric. 
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Text: It asserted that within this framework, we draw your attention (People’s 

Congress members) to Legislation 24 dealing with foreign currency circulation, 
which is no longer applicable and it has become one of the most significant 
obstacles to economic and investment activities. 

 
Hypothesis: Article 24 is obsolete, and is hindering the economy. 
 
Textual Entailment: TRUE 
 
Lexical Entailment: FALSE 
 
Hypothesis 
Word 

LEPco 
Alignment 

LEPws 
Alignment 

LEPthes 
Alignment 

Manual 
Alignment 

article no legislation legislation legislation 
00 00 00 00 00 
obsolete no (none) (none) (none) 
hindering no (none) (none) (none) 
economy no investment currency economic 

Figure 16. Alignment for sentence pair (ID=1251) produced by each LEP metric. 

This is a typical alignment by each of the three LEP metrics illustrating some common 

mistakes. The most inaccurate LEPco metric aligns every hypothesis word not stated 

verbatim in the text with the text word no because no is a very common word and, as 

explained in Chapter 3.2.2, common words tend to produce inappropriately high values 

for LEPco.  Thus its prediction of lexical entailment for this sentence pair is inaccurate. 

LEPws and LEPthes both do fairly well on recognising that neither obsolete nor hindering 

is lexically entailed by any single word from the text, but they also both make a typical 

mistake on the term economy by aligning it with a related, but not technically entailing, 

word.  Both are more accurate than LEPco, but not perfect.  Another example sentence 

pair follows in Figure 17. 

In this case, the most accurate LEP metric, LEPthes, produced the most correct 

alignments, while LEPco and LEPws produced the least.  Most of the incorrect 

alignments produced by LEPco made no sense (i.e. speculated  occurrence; tried  

pointing; use  affirmed).  The LEPws metric aligned just as many words incorrectly, 

but the words it misaligned tended to be related in some way (i.e. For speculated  

affirmed both words are verbs in the past tense having to do with making a statement). 

However it was unable to pick up that id was short for identity, which may have been 

 



4.3  LEXICAL ENTAILMENT RECOGNITION ACCURACY 45 

 

 

solved had the training corpus been larger. The LEPthes metric made the least mistakes 

and produced  
 
Text: On the other hand, Hilal affirmed that some voters were abroad or did not obtain 

their election cards, pointing to the occurrence of rare violations such as, for 
example, the desire of some voters to vote by using their identity cards. 

 
Hypothesis: Hilal speculated that some of voters had not received voting passes, or had tried 

to use their id cards. 
 
Textual Entailment: TRUE 
 
Lexical Entailment:  FALSE 
 
Hypothesis 
Word 

LEPco 
Alignment 

LEPws 
Alignment 

LEPthes 
Alignment 

Manual 
Alignment 

hilal hilal hilal hilal hilal 
speculated occurrence affirmed (none) (none) 
some some some some some 
voters voters voters voters voters 
received affirmed using (none) obtain 
voting voters pointing vote vote 
passes voters (none) (none) cards 
tried pointing using abroad (none) 
use affirmed such obtain using 
id pointing (none) identity identity 
cards cards cards cards cards 

Figure 17. Alignment for sentence pair (ID=1250) produced by each LEP metric. 

the most accurate alignments.  Overall, the more accurate the LEP metric, the better 

alignments the model produces and the more accurate the model is at predicting lexical 

entailment. 

There is still room for improvement on the lexical entailment recognition task.  The two 

errors that the model made were false positives – marking FALSE sentences as lexically 

entailing – and false negatives – marking TRUE sentences as not entailing.  Examining 

some of the incorrectly classified sentence pairs shows the reason for the errors. The 

false negatives were caused when the LEP metric failed to recognise entailing word 

pairs, and in most cases the missed word pairs were different forms of the same word. 

For instance, in the example from Figure 18 which shows an alignment created by the 

LEPthes metric, the hypothesis words are all actually entailed by a different form of the 
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same word (study studies, hibernation hibernating, mammal mammals, 

german germany). However, the LEPthes fails to recognise most of these entailments 

and produces a very low score for the sentence pair, resulting in its classification of not 

entailing.  In order to correct this deficiency we may want to incorporate stemming or 

some other method of recognising different variations of the same word into our LEP 

metrics. 
 
Text: The German-based team say their study is the only report of prolonged 

hibernation in a tropical mammal. 
 
Hypothesis: The team studies hibernating mammals in Germany. 
 
Lexical Entailment:  TRUE 
 
Hypothesis 
Word 

LEPthes 
Alignment 

Manual 
Alignment 

team team team 
studies (none) study 
hibernating (none) hibernation 
mammals (none) mammal 
germany german german 

Figure 18. Alignment for sentence pair (ID=211) produced the LEPthes metric and manual alignment. 
  

The other errors that the model made were false positives.  Some of the false positives 

happened when the model simply aligned word pairs that were actually not entailing. 

Others were caused by an inconsistency in the model’s estimation of the cut-off value, 

λ=P(Trh=1).  Examining the table in Figure 15, one will notice that in every case where 

the model uses smoothing, the cut-off value is less than the smoothing value. This 

means that FALSE sentences which are correctly identified as having just one un-

entailed hypothesis word will still be classified as lexically entailing.  This is an 

inconsistency that can only be fixed by adjusting the probabilistic model to estimate 

P(Trh=1) in a more logical way than simple empirical tuning. 

 

4.4 Discussion 

By testing the performance of the several Bar Ilan models on the textual and lexical 

entailment recognition tasks, we find that embedding more accurate LEP estimates 
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does in fact increase the model’s overall accuracy in predicting lexical entailment but 

does not affect the model’s accuracy in the textual entailment recognition task. The 

figure below compares the seven models that were tested in terms of the percentage of 

sentence pairs they classified correctly.  Looking at this table one can see that the 

accuracy of the seven models does not vary significantly for the textual entailment task. 

For the lexical entailment task, though, the model using the least accurate LEPco metric 

classifies only 64% of sentence pairs correctly, while the model using the most accurate 

LEPthes metric classifies 79.5% of pairs correctly when used with =0.001. 

 

LEP Metric LEPco LEPws LEPthes

Precision of Top-10 
similar words .180 .405 .786 

  0.001 0.01 0.02 0.001 0.01 0.02 
Textual Entailment % 
Correctly Classified 57.125 56.625 57.5 56.875 56.875 56.25 56.25 

Lexical Entailment % 
Correctly Classified 64 72 72.5 72.5 79.5 74 76.5 

Figure 19. Percentage of sentence pairs correctly classified by model. The precision scores are taken from 

Figure 10. 

Another way to compare the models’ performance on the two tasks is by adapting a 

common evaluation measure from Information Retrieval called the F-measure (van 

Rijsbergen, 1979).  The F-measure is calculated using the formula: 

,ݎሺܨ ሻ ൌ  
ݎ2

ݎ  
 

(4.1) 

where r denotes recall and p denotes precision of an information retrieval system.  As 

explained in (Rennie, 2004), the F-measure is simply the harmonic mean of the recall 

and precision values.  That paper defines the harmonic mean H of the set of numbers    

X = {x1...xn} as: 

1
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(4.2) 

Our systems have two sets of recall and precision values – one for the sentence pairs 

classified as TRUE and another for the pairs classified as FALSE. We can adapt the F-

measure to our system by simply taking the harmonic mean of all four numbers, 

substituting X={rT,pT,rF,pF} in Equation 4.2.  The figure below shows the harmonic 

mean of each model on the textual and lexical entailment recognition tasks. 

 

LEP Metric LEPco LEPws LEPthes

Precision 
of Top-10 
similar 
words 

.180 .405 .786 

 N/A 0.001 0.01 0.02 0.001 0.01 0.02 
Textual 

Entailment 
Harmonic 

Mean 
0.451603  0.543629  0.537223  0.5331385  0.4470781  0.5274415  0.527441 

Lexical 
Entailment 
Harmonic 

Mean 
0.627127  0.71954  0.724462  0.7244621  0.7921352  0.7340627  0.762159 

Figure 20. Harmonic mean by model. 

Using the harmonic mean as a judge, the two worst-performing models for the textual 

entailment recognition task were the LEPco model and the LEPthes model with =0.001. 

Referring back to Figure 13, we see that both of these models classified 683 of 800 

sentence pairs as textually entailing, leading to a very high number of false positives 

and consequently very low recall for the FALSE pairs, which brought down their 

harmonic means. Overall, the precision of the LEP metric does not seem to have much 

bearing on the harmonic mean for the textual entailment recognition task.  For the 

lexical entailment task, however, we notice that the most accurate LEPthes metric 

produces the best harmonic means overall, while the least accurate LEPco metric 

produces the lowest harmonic mean.  Again, high accuracy for the embedded LEP 

metric correlates to better accuracy on the lexical entailment recognition task but not on 

the textual entailment recognition task. 
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It is relatively straightforward to see why the Bar Ilan model performed so much better 

on the lexical entailment recognition task overall than it did on predicting textual 

entailment.  Recall that the Bar Ilan model is designed to predict lexical entailment 

directly, and then to use this as the estimate for the textual entailment relationship.  It 

is more closely related to the lexical than the textual entailment prediction task and 

thus should perform it better.  

If we look at the distribution of scores for the lexical entailment dataset next to the 

distribution of scores from the textual entailment dataset (repeated from Figure 14), we 

see that while the textual entailment dataset does not obviously separate into clusters 

of TRUE and FALSE sentence pairs, the lexical entailment graph shows a much more 

distinct separation between the sentence pairs classified as TRUE, in blue, and the 

FALSE sentence pairs in red.  Thus it was possible for the model to pick a cut-off point 

that better separated the data. However the area where the two clusters meet is still 

fairly mixed, which explains why the model was still not completely accurate at 

predicting lexical entailment. 

The question that remains is why the gains in lexical entailment recognition accuracy 

resulting from the embedding of more accurate LEP metrics did not translate to 

increased accuracy on the textual entailment recognition task.  After examining 

disagreements in sentence pair classification between the lexical entailment and textual 

entailment datasets, it is apparent that this may be due in part to the fact that lexical 

entailment recognition is only part of the process of recognising textual entailment; a 

perfect textual entailment recognition system would need to incorporate other tests in 

addition. 
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The confusion matrix below compares the lexical and textual entailment classifications 

for the 200 sentence pairs in the lexical entailment dataset.  Of the 200 sentence pairs, 

134 (67%) agreed in their lexical and textual entailment classifications.  This is close to 

the value of 69% agreement between lexical and textual entailment classifications 

estimated in (Glickman, 2006). 

  Textual Entailment Classification  

  TRUE FALSE Total 

Le
xi

ca
l 

E
nt

ai
lm

en
t 

C
la

ss
ifi

ca
tio

n 

TRUE 74 37 111 

FALSE 29 60 89 

 Total 103 97 200 

Figure 22. Comparison of lexical and textual entailment datasets. 

Of the 66 sentence pairs for which the lexical and textual classification was different, 37 

(56%) were lexically entailed but not textually entailed.  An example of one of these 

sentence pairs is below: 
 
Text: Gunmen loyal to Bosnian Serb nationalist leader Radovan Karadzic conquered 

70% of Bosnia with their arsenal of tanks, aircraft and howitzers bequeathed by 
the Yugoslav army. 

 
Hypothesis:  Radovan Karadzic is the leader of Bosnia. 

Figure 23. Example of sentence pair that is lexically but not textually entailed. 

In this hypothesis there are four words that are not stop words and all of them are 

stated verbatim in the text, so the lexical entailment relationship holds for the sentence 

pair.  But the underlying meaning of the text does not entail the underlying meaning of 

the hypothesis, so it is not textually entailed.  Our probabilistic lexical entailment model 

is incapable of picking up this difference.  In order to classify this sentence directly, we 

would need a textual entailment recognition model that incorporated some type of 

semantic analysis.  
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The other 29 sentence pairs for which the lexical and textual entailment classifications 

did not match up were textually entailed but not lexically entailed. A few examples of 

such pairs are repeated below to illustrate some of the issues that cause these errors. 
 
Pair 1 
Text: Treasures belonging to Hollywood legend Katharine Hepburn have raised £3.2m 

at a two-day auction in America. 
Hypothesis: A two-day auction of property belonging to actress Katharine Hepburn brought in 

3.2 million pounds. 
 
Pair 2 
Text: The memorandum noted the United Nations estimated that 2.5 million to 3.5 

million people died of AIDS last year. 
Hypothesis: Over 2 million people died of AIDS last year. 
 
Pair 3 
Text: Jakarta lies on a low, flat alluvial plain with historically extensive swampy 

areas; the parts of the city farther inland are slightly higher. 
Hypothesis: The parts of Jakarta away from the coast are on slightly higher land. 
 
Pair 4 
Text: The country’s largest private employer, Wal-Mart Stores Inc., is being sued by a 

number of its female employees who claim they were kept out of jobs in 
management because they are women. 

Hypothesis: Wal-Mart sued for sexual discrimination. 
 
Pair 5 
Text: Government forces killed the head of the Armed Islamic Group, or GIA, which 

has claimed responsibility for killing 61 foreigners in the last year. 
Hypothesis: The abbreviation GIA stands for Armed Islamic Group. 

Figure 24. Examples of sentence pairs which are textually but not lexically entailed. 

The problems with the first three pairs can would be relatively straightforward to 

manage.  The issue with Pair 1 is that the lexical entailment model does not recognise 

that £3.2m is an abbreviation for 3.2 million pounds; this could be solved by including £ 

and m as words of the text and training the model to recognize that £ entails pounds 

and m entails million.  The issue for Pair 2 is that our model does not have any 

mechanism to do numerical analysis; it converts all digits to 0 and cannot recognise that 

2.5 million to 3.5 million entails over 2 million.  This might be solved by refraining from 

converting digits to 0 and incorporating some sort of numerical analysis, perhaps by 

interpreting words like over, under, and approximately in their mathematical senses of 

>, <, and ≈.  The reason why Pair 3 is not lexically entailed is that our model does not 

consider phrase entailment; if it did, it would recognise that farther inland entails away 
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from the coast.  It may be possible to implement phrasal entailment by applying 

techniques developed for statistical phrase-based translation (Koehn, Och, & Marcu, 

2003) or paraphrase recognition (Quirk, Brockett, & Dolan, 2004) (Dolan, Quirk, & 

Brockett, 2004).  Pair 4 and Pair 5 have deeper problems.  For both sentence pairs it is 

only possible to conclude that the textual entailment relationship holds by combining 

semantic understanding and world knowledge, which are difficult research areas in 

natural language understanding.  

As the errors above illustrate, recognising lexical entailment is only one of the 

requirements for recognising textual entailment.  This is why the gains in lexical 

entailment recognition which resulted from embedding more accurate LEP estimates 

within the model did not translate to gains in textual entailment recognition.
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Chapter Five: Conclusion  

 

The overall aim of this project was to see whether it was possible to improve the 

accuracy of the Bar Ilan probabilistic lexical entailment model on the textual entailment 

recognition task by replacing its simple web-based co-occurrence lexical entailment 

probability estimate with more accurate LEP metrics.  We implemented the Bar Ilan 

LEPco metric as well as two other estimates based on the distributional similarity of 

syntactic features (LEPws) and an existing thesaurus (LEPthes). We then tested the 

accuracy of each metric to verify that the two latter metrics were more precise than the 

first.  Finally we embedded each LEP metric within the Bar Ilan model to test its effect 

on the model’s performance in the lexical and textual entailment recognition tasks.  

The results of these tests showed that increasing the LEP metric’s accuracy 

corresponded with an increase in the model’s lexical entailment prediction accuracy 

from 64% to 79.5%, but had no major effect on the model’s textual entailment 

recognition accuracy which hovered around 56-57%.   

An analysis of the results shows that further gains in lexical entailment recognition 

could be made in at least two ways.  First, to enable the model to recognise when a 

hypothesis word is entailed by another form of itself within the text, it may be beneficial 

to apply stemming to the words of the text and hypothesis before calculating the lexical 
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entailment probability between each pair of words.  Second, instead of simply 

estimating the ‘cut-off value,’ or prior probability that the hypothesis sentence is true, 

by empirically tuning it to the data, it may be beneficial to estimate P(Trh=1) based on 

the content of the hypothesis. One way to do this could be to vary P(Trh=1) with the 

length of the hypothesis, since the entailment probability P(Trh=1|t) is estimated as the 

product of the individual lexical entailment probabilities P(Tru=1|v) for each u∈h, and 

therefore P(Trh=1|t) ן ch for some constant c.  Another possibility might be to base 

P(Trh=1) on the frequency of each u∈h within some corpus. All of these modifications to 

the lexical entailment model might be interesting areas for future research. 

However, the results of our tests also suggest that improving the Bar Ilan model’s 

lexical entailment recognition ability will not lead to major gains in its textual 

entailment recognition ability because lexical entailment recognition is only a part of 

what a system would need to predict textual entailment accurately.  Other 

requirements of a textual entailment recognition system might include semantic 

analysis, numerical analysis, and phrase-based lexical entailment recognition.  Further 

research into the textual entailment recognition task may focus on incorporating one or 

more of these elements with the existing probabilistic lexical entailment model.



 

 

57 

Appendix A:  Stop Words 

 

Following is the list of 50 stop words that were filtered out of the probabilistic lexical 

entailment model. 

 

the 
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and 

to 
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for 
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if 
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Appendix B:  Pseudocode for the Textual Entailment 

Model 
 
Function textualEntailmentModel(){ 
   
  READ input .xml file 
  REPEAT{ 
 
    GET the next line 
  
    IF the next line contains "<pair" { 
      Set pair_id to the value of the id attribute in the line 
 Set pair_value to the value of the value attribute in the line 
 Set pair_task to the value of the task attribute in the line 
    }  
    ELSE IF the next line contains "<t>"{ 
 Erase all leading and trailing white space from the line 
 Remove all instances of the characters ([{)]}"'`.,;:-!? 
 Replace all digits with 0 
 Convert all characters in the line to lowercase 
   
 Create text array 
 Set index to 0 
 FOR each word in the remaining line { 
   IF the stoplist does not contain the word { 
     Set text(index) to that word 
     Set index to index + 1 
        } 
 } 
    } 
    ELSE IF the next line contains "<h>" { 
 Erase all leading and trailing white space from the line 
 Remove all instances of the characters ([{)]}"'`.,;:-!? 
 Replace all digits with 0 
 Convert all characters in the line to lowercase 
   
 Create hypothesis array 
 FOR each word in the remaining line { 
   IF the stoplist does not contain the word { 
     Set hypothesis(index) to that word 
     Set index to index + 1 
        } 
 }  
 Create alignment array 

Create scores array 
 Set hypothesis_index to 0 
 FOR each word in the hypothesis array { 
   Set h_word to the current hypothesis word 

  Set max to 0 

 



60                                                                           APPENDIX B:  PSEUDOCODE 

 

 

   Set overall_score to 1 
   Set align_word to NULL 
    
   IF any word from the text array equals h_word { 
     Set max to 1 
     Set align_word to h_word 
   } 
   ELSE { 

    FOR each word in the text array { 
       Set t_word to the current text word  
  IF LEP(h_word, t_word) > max { 
    Set max to LEP(h_word, t_word) 
      Set align_word to t_word 
  } 
          }  
        }    

  Set overall_score to overall_score * max  
  Set scores(hypothesis_index) to max     

   Set alignment(hypothesis_index) to align_word   
        Set hypothesis_index to hypothesis_index + 1 
      } 
    }   
    ELSE IF the next line contains "</pair>" { 
 APPEND results to output file 
    } 
  }UNTIL the end of the input file is reached 
} 
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Appendix C:  Pseudocode for calculating LEPco(u,v) 
 
Function LEPco(u,v){ 
   
  Set v_query to v 
   
  IF u precedes v alphabetically 
    Set uv_query to "u"+_+"v" 
  ELSE 
    Set uv_query to "v"+_+"u" 
  
  IF cache contains v_query 
    GET number of hits for v_query from cache 
    Set denominator to hits 
  ELSE 
    Set v_hits to webSearch(v_query) 
    Add (v_query, v_hits) to cache 
    Set denominator to v_hits 
 
  IF cache contains uv_query 
    GET number of hits for uv_query from cache 
    Set numerator to hits 
  ELSE 
    Set uv_hits to webSearch(uv_query) 
    Add (uv_query, uv_hits) to cache 
    Set numerator to uv_hits 
   
  Set LEPuv = numerator / denominator 
  
  RETURN LEPuv 
} 
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Appendix D: Java code for counting word-feature 

pairs 

 
/********************************************************************* 
 * PairCounts takes in the names of 2 files: a master count file, listing  
 * words followed by a list of features they co-occur with and relevant  
 * count; and a filenames list of parse files yet to be processed. 
 * 
 * It updates the master count file after each set of 10 parsed files. 
 *********************************************************************/ 
 
import java.io.*; 
import java.util.regex.*; 
import java.util.*; 
 
 
public class PairCounts { 
     
     
    public PairCounts() { 
    } 
     
    // the following ArrayList will be used to index all words 
    private static ArrayList vocab; 
     
    /** These Hashtables of ArrayLists will store the features applicable  
     *  to each word and the count of each word/feature pair. They will  
     *  share the same index so that the order of features in the  
     *  ArrayList for word1 stored in words2features will correspond to  
     *  the order of the counts in the ArrayList indexed by word1 stored  
     *  in words2wfcounts. 
     */ 
    private static Hashtable words2features; 
    private static Hashtable words2wfcounts; 
     
    private static int total_feature_count; 
     
    public static Pattern p = Pattern.compile("_\\d+"); 
    private static Pattern nonalphanum = Pattern.compile("[\\W&&[^-]]"); 
    private static Pattern num = Pattern.compile("\\d"); 
     
    public static void main(String[] args) { 
         
        /*************************************************** 
         * Read args 
         **************************************************/ 
        String wfpairsfile = args[0]; 
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        String listfile = args[1]; 
        int groupsize=10; 
        if (args.length > 2) 
            groupsize = Integer.valueOf(args[2]); 
         
        /*************************************************** 
         * Keep running program until the list of input 
         * files is exhausted 
         **************************************************/ 
        do { 
            /*************************************************** 
             * Zero indexes 
             **************************************************/ 
            System.out.println("Initialising index..."); 
            zero_indexes(); 
             
            /*************************************************** 
             * Read list of input files 
             **************************************************/ 
             
            System.out.print("Reading input files..."); 
            ArrayList filenames = new ArrayList(); 
             
            try { 
                BufferedReader fin =  

  new BufferedReader(new InputStreamReader 
                        (new FileInputStream 
                        (listfile))); 
                if (!fin.ready()) { 
                    System.out.println("End of file list reached"); 
                    return; 
                } 
                 
                while (fin.ready()) { 
                    String name = fin.readLine(); 
                    filenames.add(name); 
                } 
                 
                fin.close(); 
            }catch(IOException e) { 
                System.out.println(e); 
            } 
            System.out.print("Done\n"); 
             
            /*************************************************** 
             * Get names of next (10) files to process 
             **************************************************/ 
            int arraysize = 0; 
            String[] filelist = new String[groupsize]; 
            for (int jj=0; jj<groupsize; jj++) 
                if (!filenames.isEmpty()) { 
                filelist[jj] = filenames.get(0).toString(); 
                filenames.remove(0); 
                arraysize++; 
                } 
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            /*************************************************** 
             * Process each of (10) files and update counts 
             **************************************************/ 
            for (int jjj=0; jjj<arraysize; jjj++) { 
                try { 
                    String currentfilename = filelist[jjj]; 
                    // read in the parse file 
                    BufferedReader in =  

new BufferedReader(new InputStreamReader 
                            (new FileInputStream 
                            (currentfilename))); 
                    System.out.println("Processing: " + currentfilename); 
                    System.out.println("Vocab size: " + vocab.size()); 
 
                    if (!in.ready()) { 
                        System.out.println 
                                ("File " + currentfilename  

   + " did not open"); 
                        continue; 
                    } 
                     
                    /*************************************************** 
                     * Read in word/feature pairs 
                     **************************************************/ 
                    // go through parsed results line-by-line 
                    while (in.ready()) { 
                        String line = in.readLine().toLowerCase(); 
                         
                        // ignore lines starting with <c> and containing  

// s_0 
                        if (line.contains("<c>") || line.contains("s_0")) 
                            continue; 
                        // ignore blank lines 
                        if (!line.contains("(")) 
                            continue; 
                        // ignore commented lines 
                        if (line.contains("#")) 
                            continue; 
                         
                        // filter out the position markers like _13 
                        Matcher m = p.matcher(line); 
                        line = m.replaceAll(""); 
                         
                        // change all digits to 0 
                        Matcher m4 = num.matcher(line); 
                        line = m4.replaceAll("0"); 
                         
                        // filter out the opening and closing brackets 
                        line = line.substring(1,line.length()-1); 
                         
                        String[] lineargs = line.split("\\s"); 
                        for (int k=0; k<lineargs.length; k++) 
                            lineargs[k] = lineargs[k].trim(); 
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                        String GR, w1, w2, w1feature, w2feature; 
                         
                        // ignore lines with less than 3 fields 
                        if (lineargs.length <3) 
                            continue; 
                         
                        // if there are more than 3 fields, check GR type 
                        // and append optional fields to GR type, and then                

// reduce all fields to the first three positions  
// in the array 

                        if (lineargs.length > 3) { 
                            if (lineargs[0].equals("ncsubj") || 
                                 lineargs[0].equals("xsubj") || 
                                 lineargs[0].equals("csubj")) 
                                lineargs[0] = lineargs[0] + "." +  

lineargs[3]; 
                             
                            else { 
                                lineargs[0] = lineargs[0]+ "." +  

lineargs[1]; 
                                lineargs[1] = lineargs[2]; 
                                lineargs[2] = lineargs[3]; 
                            } 
                        } 
                         
                        // pull out GR, w1 and w2 
                        GR = lineargs[0]; 
                        w1 = lineargs[1]; 
                        w2 = lineargs[2]; 
                         
                        // Ignore words with non-alphanumeric characters 
                        Matcher m2 = nonalphanum.matcher(w1); 
                        if (m2.find()) { 
                            continue; 
                        } 
                        Matcher m3 = nonalphanum.matcher(w2); 
                        if (m3.find()) { 
                            continue; 
                        } 
                         
                        // create two features - one for each word 
                        // D denotes that the word inside brackets was the 
                        // dependent in the original parse, whereas H  
                        // denotes that the word inside brackets was the 
                        // head in the original parse 
                        w1feature = "< " + GR + " " + w2 + " D >"; 
                        w2feature = "< " + GR + " " + w1 + " H >"; 
                         

                        
/************************************************* 

                         * Add the two new features to the indexes 
                         
************************************************/ 

                        add_to_index(w1, w1feature, 1); 
                        add_to_index(w2, w2feature, 1);      
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                    } 
                    in.close(); 
                    System.out.print("Done\n"); 
                } catch (IOException e) { 
                    System.out.println(e); 
                }                 
                 
                /********************************************* 
                 * Write Word/Feature Counts to temporary file 
                 ********************************************/ 
                 
                // make sure they come out in alphabetical order 
                Collections.sort(vocab); 
                System.out.print 
                     ("Writing word/feature counts to temporary file..."); 
                try { 
                    FileWriter wfpairs_out = 
                            new FileWriter("tempfile.txt"); 
                     
                    // Write total feature count 
                    wfpairs_out.write(total_feature_count+"\n"); 
                     
                    // for each word in vocab, write features and counts 
                    for (int t=0; t<vocab.size(); t++) { 
                        String thisword = vocab.get(t).toString(); 
                         
                        // write word 
                        wfpairs_out.write(thisword + " "); 
                         
                        // write features and counts 
                        ArrayList currentfeaturelist = 
                                (ArrayList) words2features.get(thisword); 
                        ArrayList currentcountlist = 
                                (ArrayList) words2wfcounts.get(thisword); 
                         
                        for (int q=0; q<currentfeaturelist.size(); q++) { 
                             
                            String currentfeature =  
                                    currentfeaturelist.get(q).toString(); 
                            int paircount = 
                                    Integer.valueOf 
                                    (currentcountlist.get(q).toString()); 
                             
                            wfpairs_out.write(currentfeature + " " 
                                    + paircount + " "); 
                        } 
                        wfpairs_out.write("\n"); 
                    } 
                    wfpairs_out.close(); 
                } catch (IOException j) { 
                    System.out.println(j); 
                } 
                System.out.print("Done\n"); 
            } 
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            /**************************************************** 
             * Merge temporary counts file with large file 
             ***************************************************/ 
            System.out.print("Merging files..."); 
            String[] mergeargs =  
                {"tempfile.txt", wfpairsfile, "tempmergedfile.txt"}; 
            MergeCounts.main(mergeargs); 
             
            // copy temporary merged file back to wfpairsfile 
            try{ 
                BufferedReader tempin =  

new BufferedReader(new InputStreamReader 
                        (new FileInputStream 
                        ("tempmergedfile.txt"))); 
                 
                FileWriter tempout = new FileWriter(wfpairsfile); 
                while (tempin.ready()) { 
                    String linein = tempin.readLine(); 
                    tempout.write(linein+"\n"); 
                } 
                tempin.close(); 
                tempout.close(); 
            }catch(IOException e){ 
                System.out.println(e); 
            } 
            System.out.print("Done\n");            
             
            /**************************************************** 
             * Output remaining files to file list 
             ***************************************************/ 
            System.out.print("Writing remaining files to file list.."); 
            try { 
                FileWriter filenames_out = 
                        new FileWriter(listfile); 
                if (filenames.size() > 1){ 
                    for (int i=0; i<filenames.size(); i++) 
                        filenames_out.write 

   (filenames.get(i).toString() + "\n"); 
                } 
                filenames_out.close(); 
                filenames = null; 
            }  catch (IOException g) { 
                System.out.println(g); 
            } 
            System.out.print("Done\n"); 
        }while (1==1); 
    } 
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    /*************************************************************** 
     * This function takes in a word and feature pair with count x and  
     * adjusts the count of this word/feature pair in the Hashtables and 
     * ArrayList accordingly. 
     ***************************************************************/ 
    private static void add_to_index(String word, String feature, int x) { 
         
        // add x to the total feature count 
        total_feature_count += x; 
        // if the word is new, add it to the vocab list 
        int i = vocab.indexOf(word); 
        if (i == -1) { 
            vocab.add(word); 
            words2features.put(word, new ArrayList()); 
            words2wfcounts.put(word, new ArrayList()); 
        } 
        // check whether the word/feature pair has been encountered yet 
        ArrayList tempfeaturelist = (ArrayList) words2features.get(word); 
        ArrayList tempcountlist = (ArrayList) words2wfcounts.get(word); 
        int m = tempfeaturelist.indexOf(feature); 
        // if it's new, add the feature to the word's ArrayList with  

  // count of x 
        if (m == -1) { 
            tempfeaturelist.add(feature); 
            tempcountlist.add(x); 
             
            words2features.remove(word); 
            words2features.put(word, tempfeaturelist); 
            words2wfcounts.remove(word); 
            words2wfcounts.put(word, tempcountlist); 
        } 
        // otherwise increase the feature's count by x 
        else { 
            int n = Integer.valueOf(tempcountlist.get(m).toString()); 
            n+=x; 
            tempcountlist.remove(m); 
            tempcountlist.add(m,n); 
             
            words2features.remove(word); 
            words2features.put(word, tempfeaturelist); 
            words2wfcounts.remove(word); 
            words2wfcounts.put(word, tempcountlist); 
        } 
        tempfeaturelist = null; 
        tempcountlist = null; 
    } 
    private static void zero_indexes() { 
        vocab = new ArrayList(); 
        words2features = new Hashtable(); 
        words2wfcounts = new Hashtable(); 
        total_feature_count = 0; 
    } 
} 
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Appendix E:  Java code for calculating feature 

weights 

 
/********************************************************************* 
 * MIWeights takes in the names of 2 files: one is the master list of  
 * words followed by their features and counts; the other is a feature  
 * index of features followed by their total count and wordset. It  
 * processes these files to create an index of MI weights for word/feature   
 * pairs with the format: 
 * 
 * word1 feature1 MIweight1 feature2 MIweight2 ... 
 * word2 feature1 MIweight1 feature2 MIweight2 ... 
 * 
 *********************************************************************/ 
 
import java.io.*; 
import java.util.regex.*; 
import java.util.*; 
import java.lang.Math; 
 
public class MIWeights { 
     
    public MIWeights() { 
    } 
     
    // The following ArrayLists contain a list of features and their  
    // respective total counts 
    private static ArrayList features; 
    private static ArrayList featurecounts; 
     
    private static int total_feature_count; 
     
    public static void main(String[] args) { 
         
        // read in args 
        String wfpaircountsfile = args[0]; 
        String featureindex = args[1]; 
        String MIweightsfile = args[2]; 
         
        // populate feature lists 
        try { 
            BufferedReader fin = new BufferedReader(new InputStreamReader 
                    (new FileInputStream 
                    (featureindex))); 
            if (!fin.ready()) { 
                System.out.println("featureindex file not ready"); 
                return; 
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            } 
            System.out.println("Populating feature lists"); 
             
            features = new ArrayList(); 
            featurecounts = new ArrayList(); 
             
            // read in features and counts one at a time 
            while (fin.ready()) { 
                String line = fin.readLine(); 
                String[] lineparts = line.split(" "); 
                 
                String feature = lineparts[0] + " " + lineparts[1]  
                        + " " + lineparts[2] + " " + lineparts[3] 
                        + " " + lineparts[4]; 
                int count = Integer.valueOf(lineparts[5]); 
                features.add(feature); 
                featurecounts.add(count); 
                System.out.println("Feature: "  

+ feature + "  Count: " + count);               
            } 
            fin.close(); 
        }catch (IOException e) { 
            System.out.println(e); 
        }        
        // process wfpair counts file one line at a time and output  
        // calculated MI weights to MI weights file 
        try { 
            BufferedReader wfin = new BufferedReader(new InputStreamReader 
                    (new FileInputStream 
                    (wfpaircountsfile))); 
            if (!wfin.ready()) { 
                System.out.println("wfpairs file not ready"); 
                return; 
            } 
            System.out.println("Reading from file: " + wfpaircountsfile);   
            FileWriter weights_out = 
                    new FileWriter(MIweightsfile); 
             
            // The first line of this file is the total feature count 
            total_feature_count = Integer.valueOf(wfin.readLine()); 
            System.out.println("Total Feature Count: "  

+ total_feature_count); 
             
            int counter = 0; 
            // read in words, features and counts one at a time 
            while (wfin.ready()) { 
                counter++; 
                String line = wfin.readLine(); 
                String[] lineparts = line.split(" "); 
                 
                String word = lineparts[0]; 
                System.out.print(counter+" "+word+"..."); 
                weights_out.write(word + " "); 
                 
                ArrayList currentfeaturelist = new ArrayList(); 
                ArrayList currentfeaturecounts = new ArrayList(); 
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                // read in word/feature pair counts 
                for (int j=1; j<lineparts.length; j+=6) { 
                    String feature = lineparts[j] + " " + 
                            lineparts[j+1] + " " + 
                            lineparts[j+2] + " " + 
                            lineparts[j+3] + " " + 
                            lineparts[j+4]; 
                    int count = Integer.valueOf 

(lineparts[j+5].toString()); 
                    currentfeaturelist.add(feature); 
                    currentfeaturecounts.add(count);   
                } 
                // calculate total count for the current word 
                int cw = 0; 
                for (int k=0; k<currentfeaturecounts.size(); k++) 
                    cw += Integer.valueOf 
                            (currentfeaturecounts.get(k).toString()); 
 
                // now, for each feature in the currentfeaturelist,  
                // calculate the MI weight and store it in an ArrayList 
                ArrayList currentfeatureweights = new ArrayList(); 
                for (int m=0; m<currentfeaturelist.size(); m++) { 
                    String f = currentfeaturelist.get(m).toString(); 
                    int cf = Integer.valueOf(featurecounts.get 
                            (features.indexOf(f)).toString()); 
                    int cwf = Integer.valueOf 
                            (currentfeaturecounts.get(m).toString()); 
 
                    double weight = 0; 
                     

  // numerator = count(w,f) * total_feature_count 
                    double numerator = cwf * total_feature_count; 
                     
                    // denominator = count(w) * count(f)  
                    double denominator =  cw * cf; 
 
                    double intermediate = 1/denominator; 
                    intermediate = intermediate*cwf*total_feature_count; 
                     
                    weight = Math.log(intermediate)/Math.log(2); 
                    currentfeatureweights.add(m, weight); 
                } 
                 
                // print feature sum, and features w/ weights to file 
                weights_out.write(cw + " "); 
                for (int nn=0; nn<currentfeaturelist.size(); nn++) { 
                    double wt = Double.valueOf(currentfeatureweights. 

get(nn).toString()); 
                    if (!Double.isNaN(wt)) 
     weights_out.write 

  (currentfeaturelist.get(nn).toString()  
   + " " + wt + " "); 

                } 
                weights_out.write("\n"); 
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                currentfeaturelist = null; 
                currentfeaturecounts = null; 
                currentfeatureweights = null; 
                System.out.print("Done\n"); 
            } 
            wfin.close(); 
            weights_out.close(); 
        }catch (IOException e) { 
            System.out.println(e); 
        } 
    } 
} 
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Appendix F:  Java code for calculating LEPws 

rankings 
 
import java.io.*; 
import java.util.*; 
 
public class RankSims { 
     
    // the active features list will be utilized for filtering out any  
    // features with total count less than the feature_filter from the sim  
    // calculation 
    private static ArrayList activefeatures; 
    private static int feature_filter = 10; 
     
    // this filter will act to ignore any word/feature pairs with weight  
    // less than the given amount 
    private static int weight_filter = 4; 
     
    private static ArrayList vocab; 
     
    // This ArrayList holds the sums of all feature weights for each word 
    // in the vocabulary. It shares its index with the vocab ArrayList. 
    private static ArrayList featuresums; 
     
    // the stopwords list contains the 50 most common words from the  
    // corpus, plus '-' 
    private static String[] stopwords = {"the","of","and","to","a","in", 

"that","is","it","was","for","on","be","with","I","he","as","by", 
"you","at","are","this","not","have","had","his","from","but", 
"they","which","or","an","were","her","she","we","there","been", 
"their","one","has","will","can","all","would","do","if","more", 
"when","who","-"}; 

     
    // the stopfeatures list contains the 40 most common features from the  
    // corpus in terms of inverse word frequency; all features in this  
    // list occur with over 10,000 words 
    private static String[] stopfeatures = {"< A:lex-mod:U - D >", 

"< N:nn:N the D >","< N:lex-mod:U - D >","< N:nn:N of D >", 
"< N:nn:N and D >","< N:nn:N a D >","< N:nn:N to D >", 
"< N:nn:N the H >","< N:nn:N in D >","< N:nn:N and H >", 
"< N:nn:N to H >","< N:nn:N with D >","< N:nn:N by D >", 
"< N:nn:N in H >","< N:nn:N of H >","< N:nn:N for D >", 
"< N:nn:N a H >","< N:nn:N as D >","< N:nn:N from D >", 
"< N:nn:N that D >","< N:nn:N is D >","< N:nn:N on D >", 
"< N:nn:N was D >","< N:nn:N at D >","< N:nn:N is H >", 
"< N:mod:A the H >","< N:nn:N or D >","< N:nn:N was H >", 
"< N:nn:N it D >","< N:nn:N be D >","< N:mod:A and H >", 
"< N:nn:N that H >","< N:nn:N his D >","< N:nn:N he D >", 
"< N:nn:N on H >","< N:nn:N are H >","< N:nn:N for H >", 
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"< N:nn:N an D >","< N:nn:N i D >","< N:mod:A of H >"}; 

     
    // the featurewords and featureweights Hashtables hold ArrayLists of  
    // words and their weights respectively, indexed by feature 
    private static Hashtable featurewords; 
    private static Hashtable featureweights; 
     
    public RankSims() { 
    } 
     
    /***************************************************************** 
     * This function takes four arguments - the name of a word/feature 
     * pairs weights file, the name of a feature index, the name of a 
     * feature weights index, and the 
     * name of the file to output the similarity scores to. 
     * 
     * It outputs a file with one word and its similarity scores 
     * per line, in descending order of similarity. 
     ****************************************************************/ 
    public static void main(String[] args) { 
         
        // read in arguments 
        feature_filter = Integer.valueOf(args[0]); 
         
        weight_filter = Integer.valueOf(args[1]); 
         
        String wfweightsfile = args[2]; 
        String featureindex = args[3]; 
        String featureweightsindex = args[4]; 
        String simsfile = args[5]; 
         
        // include a file to write featuresums out to 
        String featuresumfile = args[6]; 
         
        // include the option to start from where we left off 
        boolean start = true; 
        String lastword = null; 
        if (args.length >= 8) { 
            lastword = args[7]; 
            start = false; 
        } 
         
        // include the option to read words we want the sim scores from  
        // from a file 
        String fileofwords = null; 
        boolean readwordsfromfile = false; 
        ArrayList wordlist = new ArrayList(); 
        if (args.length > 8) { 
            readwordsfromfile = true; 
            fileofwords = args[8]; 
            try { 
                BufferedReader wordsin =  

  new BufferedReader(new InputStreamReader 
                        (new FileInputStream 
                        (fileofwords))); 
                System.out.println("Generating word list"); 
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                while (wordsin.ready()){ 
                    wordlist.add(wordsin.readLine().trim()); 
                } 
                wordsin.close(); 
            }catch (IOException e) { 
                System.out.println(e); 
            } 
        } 
         
        // initialize vocabulary and feature sums lists 
        vocab = new ArrayList(); 
        featuresums = new ArrayList(); 
        activefeatures = new ArrayList(); 
        featurewords = new Hashtable(); 
        featureweights = new Hashtable(); 
         
        // populate the active features list with all features whose count 
        // is greater than the feature_filter 
        getactivefeatures(featureindex); 
         
        // populate vocab and featuresums lists from wfweights file 
        getvocab(wfweightsfile, featuresumfile); 
         
        // populate featurewords and featureweights hashtables from the 
        // feature weight index file 
        getfeaturelists(featureweightsindex); 
         
        // calculate similarity scores for each word in the vocab, from  
        // start of the file to finish 
        try { 
            BufferedReader fin2 = new BufferedReader(new InputStreamReader 
                    (new FileInputStream 
                    (wfweightsfile))); 
             
            System.out.println("Calculating similarity scores"); 
             
            // for each word w... 
            while (fin2.ready()) { 
                String line = fin2.readLine(); 
                String[] lineparts = line.split(" "); 
                 
                String w = lineparts[0]; 
                if (!vocab.contains(w)) 
                    continue; 
                 
                if (start == false) { 
                    if (w.equals(lastword)) { 
                        start = true; 
                        continue; 
                    } else 
                        continue; 
                } 
                 
                if (readwordsfromfile == true) { 
                    if (!wordlist.contains(w)) 
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                        continue; 
                } 
                 
                // remove the current word from the wordlist so we'll know  
                // which words are left over at the end 
                wordlist.remove(w); 
                 
                System.out.print(w + "..."); 
                 
                int w_index = vocab.indexOf(w); 
                 
                // store w's feature sum locally 
                double w_featuresum = 
                      Double.valueOf(featuresums.get(w_index).toString()); 
                 
                // create array to hold the similarity scores for other 
                // words v and set all values to 0 initially 
                ArrayList simwords = new ArrayList(); 
                ArrayList simscores = new ArrayList(); 
                 
                // create array to hold the featureweights for all similar  

    // words locally 
                ArrayList simsums = new ArrayList(); 
                 
                // create arrays to hold w's active features and their  
       // weights 
                ArrayList wfeatures = new ArrayList(); 
                ArrayList wfeatureweights = new ArrayList(); 
                 
                // for each feature f in F(w)... 
                for (int i=2; i<lineparts.length; i+=6) { 
                    String f = lineparts[i] + " " + 
                            lineparts[i+1] + " " + 
                            lineparts[i+2] + " " + 
                            lineparts[i+3] + " " + 
                            lineparts[i+4]; 
                     
                    // make sure the feature is in the active feature list 
                    if (!activefeatures.contains(f)) 
                        continue; 
                     
                    double wf_weight = 
                            Double.valueOf(lineparts[i+5]); 
                     
                    // make sure this feature's weight is higher than the  

  // filter 
                    if (wf_weight<weight_filter||Double.isNaN(wf_weight)) 
                        continue; 
                     
                    wfeatures.add(f); 
                    wfeatureweights.add(wf_weight); 
                } 
                 
                // Now, for each feature in wfeatures, find WS(f) and  
                // update the similarity score between w and all                 
                // v(elem of)WS(f) get WS(f) for each feature in F(w) 
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                for (int j=0; j<wfeatures.size(); j++) { 
                    String feature = wfeatures.get(j).toString(); 
                    double wfweight = 
                        Double.valueOf(wfeatureweights.get(j).toString()); 
                    if (!featurewords.containsKey(feature)) 
                        continue; 
                    ArrayList words =(ArrayList)featurewords.get(feature); 
                    ArrayList weights = 

(ArrayList)featureweights.get(feature); 
                    System.out.println(w + " : " + feature); 
                    for (int k=0; k<words.size(); k++) { 
                        String v = words.get(k).toString(); 
                        if (v.equals(w)) 
                            continue; 
 
                        double vwt =  

Double.valueOf(weights.get(k).toString()); 
                        //int v_simscoresindex = vocab.indexOf(v); 
                        // find the word v in w's simscores index 
                        int v_simscoresindex = simwords.indexOf(v); 
                        if (v_simscoresindex == -1) { 
                            simwords.add(v); 
                            simscores.add(wfweight + vwt); 
                            simsums.add 

(featuresums.get(vocab.indexOf(v))); 
                             
                        } else { 
                            double score = Double.valueOf 

(simscores.get 
(v_simscoresindex).toString()); 

                            score = score + wfweight + vwt; 
                            simscores.remove(v_simscoresindex); 
                            simscores.add(v_simscoresindex, score); 
                        } 
                    } 
                    words = null; 
                    weights = null; 
                } 
                 
                // divide each value in the simscores array by 
                // featuresum(w) + featuresum(v) 
                System.out.println("Dividing sim values"); 
                for (int s=0; s<simwords.size(); s++) { 
                    Object v = simwords.get(s); 
                     
                    double vfeaturesum = Double.valueOf 

(simsums.get(s).toString()); 
                     
                    double score = Double.valueOf 

(simscores.get(s).toString()); 
                    score = score / (w_featuresum + vfeaturesum); 
                    simscores.remove(s); 
                    simscores.add(s, score); 
                } 
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                // order simscores high to low, with the lowest being 0.04 
                System.out.println("Ordering sim values"); 
                ArrayList inordersimwords = new ArrayList(); 
                ArrayList inordersimscores = new ArrayList(); 
                 
                for (int t=0; t<simwords.size(); t++) { 
                    String word = simwords.get(t).toString(); 
                    double sim = Double.valueOf 

(simscores.get(t).toString()); 
                    if (sim < 0.04) 
                        continue; 
                    if (inordersimwords.isEmpty()) { 
                        inordersimwords.add(word); 
                        inordersimscores.add(sim); 
                    } else { 
                        boolean added = false; 
                        for (int x=0; x<inordersimwords.size(); x++) { 
                            double current = Double.valueOf 

(inordersimscores.get(x).toString()); 
                            if (sim > current) { 
                                inordersimwords.add(x, word); 
                                inordersimscores.add(x, sim); 
                                added = true; 
                                break; 
                            } 
                        } 
                        if (added==false) { 
                            inordersimwords.add(word); 
                            inordersimscores.add(sim); 
                        } 
                    } 
                } 
 
                // print simscores over .04 to file 
                System.out.println("Writing sim values to file"); 
                FileWriter printsims = new FileWriter(simsfile, true); 
                printsims.write(w + " "); 
                System.out.println(inordersimwords.size()); 
                for (int y=0; y<inordersimwords.size(); y++) { 
                    printsims.write(inordersimwords.get(y)  

+ " " + inordersimscores.get(y) + " "); 
                } 
                printsims.write("\n"); 
                printsims.close(); 
            } 
            fin2.close(); 
        }catch (IOException e) { 
            System.out.println(e); 
        } 
         
    } 
     
    private static void getactivefeatures(String featureindex) { 
        try { 
            /************************************************************ 
             * Begin by creating the active features list by reading  
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             * through the feature index and including any features with  
             * total count less than the filter. 
             ***********************************************************/ 
             
            // read in the feature index file 
            System.out.println("Reading features"); 
            BufferedReader featuresin =  

new BufferedReader(new InputStreamReader 
                    (new FileInputStream 
                    (featureindex))); 
            if (!featuresin.ready()) 
                throw new IOException(); 
            // put stop features in arraylist 
            ArrayList stopfeaturelist = new ArrayList(); 
            for (int ii=0; ii<stopfeatures.length; ii++) { 
                stopfeaturelist.add(stopfeatures[ii]); 
            } 
            // go through features line-by-line 
            while (featuresin.ready()) { 
                String line = featuresin.readLine(); 
                String[] lineparts = line.split(" "); 
                 
                String feature = lineparts[0] + " " + lineparts[1]  

+ " " + lineparts[2] + " " + lineparts[3]  
+ " " + lineparts[4]; 

                if (stopfeaturelist.contains(feature)) 
                    continue; 
                 
                int featurecount = Integer.valueOf(lineparts[5]); 
                 
                 
                if (featurecount >= feature_filter) { 
                    System.out.println(feature); 
                    activefeatures.add(feature); 
                } 
            } 
            featuresin.close(); 
            System.out.println("Active feature list complete"); 
        } catch (IOException e) { 
            System.out.println(e); 
        } 
    } 
     
    // This function reads in the vocab from the miweights file and  
    // calculates each word's feature sum from the active features. The  
    // miweights file is already filtered to include only words for which  
    // count(w) > 6. 
    private static void getvocab 

(String wfweightsfile, String featuresumfile) { 
         
        // get all the vocab from the featuresums file 
        try { 
            System.out.println 

("Populating vocab lists from feature sums file"); 
            BufferedReader sumsin =  
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new BufferedReader(new InputStreamReader 

                    (new FileInputStream 
                    (featuresumfile))); 
            while (sumsin.ready()) { 
                String line = sumsin.readLine(); 
                String[] lineparts = line.split(" "); 
                String word = lineparts[0]; 
                 
                boolean stop = false; 
                for (int j=0; j<stopwords.length; j++) { 
                    if (word.equals(stopwords[j])) { 
                        stop = true; 
                        break; 
                    } 
                } 
                if (stop) continue; 
                 
                System.out.println(lineparts[0]); 
                vocab.add(lineparts[0]); 
                featuresums.add(lineparts[1]); 
            } 
            sumsin.close(); 
        }catch (IOException e) { 
            System.out.println(e); 
        } 
    } 
     
    // this function populates the featurewords and featureweights  
    // hashtables 
    private static void getfeaturelists(String featureweightsindex) { 
        try { 
            BufferedReader fwindex =  

new BufferedReader(new InputStreamReader 
                    (new FileInputStream 
                    (featureweightsindex))); 
            System.out.println 

("Populating feature word and weight lists"); 
            while (fwindex.ready()) { 
                String fline = fwindex.readLine(); 
                String[] flineparts = fline.split(" "); 
                 
                String feature = flineparts[0] + " " 
                        + flineparts[1] + " " 
                        + flineparts[2] + " " 
                        + flineparts[3] + " " 
                        + flineparts[4]; 
                if (!activefeatures.contains(feature)) 
                    continue; 
                System.out.println(feature); 
                ArrayList words = new ArrayList(); 
                ArrayList weights = new ArrayList(); 
                for (int j=5; j<flineparts.length; j+=2) { 
                    String v = flineparts[j]; 
                     
                    // keep from including terms that are not in the vocab 
                    if (!vocab.contains(v)) 
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                        continue; 
                     
                    double vwt = Double.valueOf(flineparts[j+1]); 
                     
                    // check to make sure the weight of this feature 
                    // and v is larger than the weight filter 
                    if (vwt >= weight_filter) { 
                        words.add(v); 
                        weights.add(vwt); 
                        System.out.println(feature + " : " + v); 
                    } 
                } 
                featurewords.put(feature, words); 
                featureweights.put(feature, weights); 
            } 
            fwindex.close(); 
        }catch(IOException e) { 
            System.out.println(e); 
        } 
         
    } 
} 
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