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Sichuan cuisine Hunan cuisine Cantonese cuisine

dandan 
noodles

Kung Pao 
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Hunan
cured ham chow mein

sweet & 
sour pork

IS-A
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tangy spicy

peppery
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Semantic knowledge can be modeled manually.

WordNet  (https://wordnet.princeton.edu/)

WordNet: 155k terms

Google n-grams: 1.6M 1-2 word terms

https://wordnet.princeton.edu/


Semantic knowledge can be modeled automatically.
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Semantic knowledge can be modeled automatically.
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Semantic knowledge can be modeled automatically.

Contextual 
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Methods

antonyms?
word2vec.similarity(‘hot’,’sizzling’) = 0.51
word2vec.similarity(‘hot’,’cold’)     = 0.48
word2vec.similarity(‘hot’,’steaming’) = 0.45

navy

admiral

army

general

sh
ip

…

…

…

…
ai
rc
ra
ft

se
a ai
r

la
nd

le
ad

er

fo
ot
ba

ll
ga

m
e

ch
am

pi
on

co
m
m
an

d

pe
nt
ag

on
na

vy
ar
m
y

0 1



navy

admiral

army

general

sh
ip

…

…

…

…
ai
rc
ra
ft

se
a ai
r

la
nd

le
ad

er

fo
ot
ba

ll
ga

m
e

ch
am

pi
on

co
m
m
an

d

pe
nt
ag

on
na

vy
ar
m
y

Semantic knowledge can be modeled automatically.

antonyms?

Contextual 
Similarity

Methods

0 1

https://arxiv.org/abs/1705.01509


navy

admiral

army

general

sh
ip

…

…

…

…
ai
rc
ra
ft

se
a ai
r

la
nd

le
ad

er

fo
ot
ba

ll
ga

m
e

ch
am

pi
on

co
m
m
an

d

pe
nt
ag

on
na

vy
ar
m
y

Semantic knowledge can be modeled automatically.

antonyms?

infrequent senses?

Contextual 
Similarity

Methods

0 1

https://arxiv.org/abs/1705.01509


navy

admiral

army

general

sh
ip

…

…

…

…
ai
rc
ra
ft

se
a ai
r

la
nd

le
ad

er

fo
ot
ba

ll
ga

m
e

ch
am

pi
on

co
m
m
an

d

pe
nt
ag

on
na

vy
ar
m
y

Semantic knowledge can be modeled automatically.

antonyms?

infrequent senses?

> word2vec.most_similar(‘crane’)

cranes
cherry-picker
barge
scaffolding
9-ton
backhoe
excavator
forklift
14-ton
30-ton
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antonyms?

infrequent senses?

> word2vec.most_similar(‘crane’)

cranes
cherry-picker
barge
scaffolding
9-ton
backhoe
excavator
forklift
14-ton
30-ton
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Mitra & Craswell 2017

Semantic knowledge can be modeled automatically.

[birds], such as [pigeons]

pigeon IS-A bird

not [great], but still [good]

good < great

Lexico-Syntactic 

Pattern Methods
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Mitra & Craswell 2017

Semantic knowledge can be modeled automatically.

[birds], such as [pigeons]

pigeon IS-A bird

not [great], but still [good]

good < great

Lexico-Syntactic 

Pattern Methods

synonyms?

which meaning? great [QUALITY]  vs.  great  [SIZE]

https://arxiv.org/abs/1705.01509
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Differing textual expressions of the same meaning:

$
$
$
$

cup mug

the king’s speech His Majesty’s address

X1 devours X2 X2 is eaten by X1

really tasty exquisite

My work aims to model semantic knowledge using 
paraphrases.(acquired by  

bilingual pivoting)
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= p(e1 | f)

Bilingual Pivoting

Paraphrasing with Bilingual Parallel Corpora. Colin Bannard and Chris Callison-Burch. ACL 2005.

p(e1 | e2) ≈        p(e1 | f ) . p(f | e2) ∑
f

p(“thrown into jail” | “festgenommen”)

p(“festgenommen” | “imprisoned”)

paraphrase probability



p(e2|e1) (⇢ =0.4144) PPDB 1.0 (⇢ =0.4074) PPDB 2.0 (⇢ =0.7130)

Figure 2: Scatterplots of automatic paraphrase scores versus human scores for three ways of automatically ranking the para-
phrases: p(e2|e1) (left), PPDB 1.0’s heuristic ranking method (middle), and our supervised model for PPDB 2.0 (right). Our
rankings achieve the highest correlation with human judgements with a Spearman’s ⇢ of 0.71.

Upon publication of this paper, we will release
PPDB 2.0 along with a set of 26K phrase pairs
annotated with human similarity judgments.

2 Improved rankings of paraphrases

The notion of ranking paraphrases goes back to the
original method that PPDB is based on. Bannard
and Callison-Burch (2005) introduced the bilin-
gual pivoting method, which extracts incarcerated
as a potential paraphrase of put in prison since
they are both aligned to festgenommen in different
sentence pairs in an English-German bitext. Since
incarcerated aligns to many foreign words (in
many languages) the list of potential paraphrases
is long. Paraphrases vary in quality since the align-
ments are automatically produced and noisy. In or-
der to rank the paraphrases, Bannard and Callison-
Burch (2005) define a paraphrase probability in
terms of the translation model probabilities p(f |e)
and p(e|f):

p(e2|e1) ⇡
X

f

p(e2|f)p(f |e1). (1)

Heuristic scoring in PPDB 1.0 Instead of rank-
ing the paraphrases with a single score, Ganitke-
vitch et al. (2013) expanded the set of scores in
PPDB. Each paraphrase rule in PPDB consists of
four components: a phrase (e1), a paraphrase (e2),
a syntactic category (LHS

1), and a feature vec-
tor. This feature vector contains 33 scores of para-
phrase quality, which are described in full in the
supplementary material to this paper. The rules in
PPDB 1.0 were scored using an ad-hoc weighting
of seven of these features, given by the following
equation:

1The name LHS is due to the fact that the syntactic cate-
gory comes from the lefthand side of the synchronous CFG
rule used to produce the paraphrase.

1.0 ⇥ �log p(e1|e2)
+ 1.0 ⇥ �log p(e2|e1)
+ 1.0 ⇥ �log p(e1|e2, LHS)
+ 1.0 ⇥ �log p(e2|e1, LHS)
+ 0.3 ⇥ �log p(LHS|e1)
+ 0.3 ⇥ �log p(LHS|e2)
+ 100 ⇥ RarityPenalty

where �log p(e2|e1) is the paraphrase proba-
bility computed according to Equation 1 and
RarityPenalty is a real-valued feature that indi-
cates how frequently the paraphrase was observed
in the training data.

This heuristic linear combination of scores was
used to divide PPDB into six increasingly large
sizes– S, M, L, XL, XXL, and XXXL. PPDB-
XXXL contains all of the paraphrase rules and
has the highest recall, but the lowest average pre-
cision. The smaller sizes contain better average
scores but offer lower coverage. Ganitkevitch et
al. (2013) performed a small-scale analysis of how
their heuristic score correlated with human judg-
ments by collecting <2,000 judgments for PPDB
paraphrases of verbs that occurred in Propbank.

Supervised scoring model For this paper, we
rank the paraphrases using a supervised scoring
model. To train the model, we collected human
judgements for 26,455 paraphrase pairs sampled
from PPDB. Each paraphrase pair was judged by 5
people who each assigned a score on a 5-point Lik-
ert scale, as described in Callison-Burch (2008).
These 5 scores were averaged.

We used these human judgments to fit a regres-
sion to the 33 features available in the PPDB 1.0
feature vector, plus an additional 176 new fea-
tures that we developed. Our features included
the cosine similarity of the word embeddings that
we generated for each PPDB phrase (described in
Section 3.3), as well as lexical overlap features,
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• Bilingually-induced paraphrases provide useful signal for 
modeling lexical semantics

• Paraphrase-based signals are complementary to 
semantic information derived from monolingual 
distributional and pattern-based methods because:

• the paraphrases of a word cover its multiple meanings,

• paraphrases enable direct analysis of compositional 
phrases and their single-word equivalents,

• and paraphrases can be generated at scale.

This Thesis
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X1 devours X2 X2 is eaten by X1
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“What’s a Chinese dish that’s not so hot?”

hot dish?
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• Semantic paraphrase 
clustering (SEMCLUST) 
(Apidianaki et al. 2014) 

• Demonstrated that 
sense distinctions 
exist in PPDB 

• We use this method 
as a baseline

This goal is closely related to earlier work on Word       
Sense Induction.
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• Our clustering 
algorithm takes an 
affinity matrix as 
input 

• How should we fill it?

wij
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Our experiments compare lexical substitution performance 
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• Dataset:

• Concepts in Context (CoInCo) — 2241 instances

• For each target instance, we rank PPDB paraphrases of 
the target word as potential substitutes

• Lexsub Ranking Models:

• AddCos (Melamud et al. 2015)

• Context2Vec (Melamud et al. 2016)
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• Paraphrase strength is a useful signal for discriminating 
between different word meanings within a paraphrase 
set
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paraphrase strength with distributional similarity signals
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“What’s a Chinese dish that’s not too hot?”

hot

more 
intense

less 
intense

tangy spicy

fiery like lava

peppery

zesty
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• Claims: 

• We can use adjectival phrase 
paraphrases to predict relative 
adjective intensity 

• This paraphrase-based information is 
complementary to pattern- and 
lexicon-based information

really hot <—> fiery
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• Challenge 2: Resolve noise 

• Result: Relative intensity prediction model
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Other evidence types: 
Lexicon-based evidence

Adjective Score
exquisite 5
beautiful 4
appealing 3

above-average 2
okay 1

ho-hum -1
pedestrian -2

gross -3
grisly -4

abhorrent -5

Semantic Orientation CALculator  
(SOCAL)

Taboada et al. 2011

• Lexicon-based score simply 
requires a look-up in SOCAL 

• In order to compute a score for 
(        ), both adjectives must 
have the same polarity

ju, jv
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• We use DeMelo & Bansal (’13) 
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Paraphrase evidence has high coverage, but 
other types are more accurate

Coverage vs. Accuracy
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We can combine score types using  
a back-off method

“If scorex can be computed, use it. Otherwise, use scorey.”

scorex+y( ju, jv)
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Experimental setup: 
Indirect Question Answering

Q: Was he a successful ruler?

A: Oh, a tremendous ruler.

(YES!)

Q: Does it have a large impact?

A: It has a medium-sized impact.

(NO!)

• IDQA Dataset (deMarneffe et al. 2010) 

• 123 question/answer pairs 

• Rule-based method for predicting the answer 
(deMarneffe et al. 2010)
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   Learning Scalar Adjective Intensity 
   EMNLP 2018

hot < fiery

• Take-aways:

• Paraphrases provide a new method for predicting 
relative adjective intensity

• With higher coverage and lower precision, paraphrase-
based intensity evidence is complementary to lexicon- 
and pattern-based intensity evidence
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Word meaning is contextual.

Premise He rearranged the layout of the room, placing 
the table by the window.

Hypothesis The furniture was moved.

Entailed? TRUE

Premise She rearranged the layout of the document, 
placing the table on page four.

Hypothesis The furniture was moved.

Entailed? FALSE
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How can we create corpora that explicitly model different 
meanings?

use manually sense-tagged resources

crowdsourcing

Shwartz & Dagan 2016

unsupervised sense tagging

Gale et al. 1992



Paraphrase Sense-Tagged Sentences (PSTS)

bug - informer

bug - microbe

bug - fault

bug - error

bug - microphone

bug - bacterium

bug - beetle

bug - insect bug - glitch

bug - snitch

bug - parasite

bug -  mosquito

bug - microorganism

bug - squealer

bug - microchipbug - fly

bug - virus

bug - gnat

bug - fault bug - mistake 

bug - rat

bug - failure

bug - cockroach

bug - defect bug - earpiece

bug - mole

bug - tracker
bug - pest

…notification of all 
software upgrades, 
and bug fixing…

…it’s just some bug 
going around…

…as stuck as a bug on 
flypaper…
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• Claims:

• The pivot method can be applied to generate a 
paraphrase-sense-tagged corpus at scale

• The resulting resource is useful for training sense-aware 
models for downstream tasks
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Bilingual pivoting can be leveraged to build PSTS

… the  nationalist   bug   has  infected  the  EU  itself …

le  virus   nationaliste  a  infecté  jusqu’à  l’union …

“bug” ≈ “virus”

once  the   virus   is  found  to  be  present  in  a  vineyard …

une  fois   le  virus   décelé  dans  le  vignoble …



Step 1: Find shared translations

Fx Fy

Fxy = Fx ∩ Fy

y2k (zh)

病菌 (zh)

vaihtumisen (fi)

error (es)

(ar) الفيروس
: (fr)

⾍虫 (zh)

(ar) ميكروب

virus (fr)

ιός (el)

溶⾎血 (zh)

cellulaire (fr)

übertragung (de)

cualquiera (es)

毒害 (zh)

x = bug y = virus
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On dirait que vous avez attrapé le virus .
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PMI is only loosely correlated with human judgments of 
sentence quality…

ρ = 0.22



…so we train a regression model to better correlate with 
human judgments, which can be used to rank sentences
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…so we train a regression model to better correlate with 
human judgments, which can be used to rank sentences

ρ = 0.40

• Regression model 
predicts human rating 
based on input sentence 
and paraphrase

• Feature types
• PPDB features
• contextual features
• syntactic features
• PMI

• Training set: 1280 
instances
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• Claims: 

• The pivot method can be applied to generate a 
paraphrase-sense-tagged corpus at scale 

• The resulting resource is useful for training sense-aware 
models for downstream tasks
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• Training word sense embeddings

• Word sense induction

• Contextual hypernym prediction

PSTS demonstrated use in three tasks 
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PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

Existing Dataset Sizes

S&D-Binary

WHiC

PSTS

0 30000 60000 90000 120000

5,361

930

116,665

17,420

2,820
(Shwartz & Dagan ’16)

(Vyas & Carpuat ’17)



PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

PSTS ∩ WordNetFind related terms in                          : 1

(table, furniture)

(table, leg)

hypernym

meronym
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PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

Generate related instances2

si ∈ PSTS(table, furniture) → ct
sj ∈ PSTS( furniture, table) → cw

table → t
furniture → w

YES → y

table
furniture

YES

(table, furniture) hypernym

(table, furniture,
 “I’m at the store buying an end table.”,
 “Furniture, furnishings, and household equipment.”,
 “YES”
)
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Generate related instances2
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table → t
furniture → w

YES → y

table
      leg

 NO

(table, leg) meronym



PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

Generate related instances2

si ∈ PSTS(table, leg) → ct
sj ∈ PSTS(leg, table) → cw

table → t
furniture → w

YES → y

table
      leg

 NO

(table, leg) meronym

(table, leg,
 “Set the plates on the table for me, please.”,
 “It got a scratch in the leg during shipment.”,
 “NO”
)
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Generate unrelated instances3

table leg lap

(table, leg) meronym



PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

Generate unrelated instances3

si ∈ PSTS(table, leg) → ct
sj ∈ PSTS(leg, lap) → cw

table → t
furniture → w

YES → y

table
      leg

 NO

table leg lap

(table, leg) meronym



PSTS can be used to develop a large dataset for training 
contextual hypernym prediction models

Generate unrelated instances3

si ∈ PSTS(table, leg) → ct
sj ∈ PSTS(leg, lap) → cw

table → t
furniture → w

YES → y

table
      leg

 NO

table leg lap

(table, leg) meronym

(table, leg,
 “Set the plates on the table for me, please.”,
 “She hit a wall during the last leg of the race.”,
 “NO”
)



Experiments



Experiments

• Evaluate performance of hypernym prediction models 
trained on PSTS vs. S&D-binary vs. WHiC

• Test on existing S&D-binary, WHiC test sets

• Model: BERT



BERT

C T1 T< Tt T> TN T[SEP] T’1 T’< T’w T’> T’M

[CLS] Tok1 < t > TokN [SEP] Tok1 < w > TokM

FC

Class
Label

. . . . . . . . . . . .

. . . . . . . . . . . .

Sentence 1 (     )ct Sentence 2 (     )cw

The BERT transformer encoder can be fine-tuned for the 
contextual hypernym prediction task
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• Claims: 

• The pivot method can be applied to generate a 
paraphrase-sense-tagged corpus at scale 

• The resulting resource is useful for training sense-aware 
models for downstream tasks
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• Take-aways: 

• Paraphrases-as-senses is a useful abstraction for 
modeling fine-grained word meaning 

• Paraphrases are a similar, but alternative, method to 
foreign translations for automatically generating sense-
tagged corpora
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Future work:   
Applying paraphrases to add’l models of lexical semantics

Taxonomy/Ontology Induction? Hypernym prediction?
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Future work:   
Applying paraphrases to add’l models of lexical semantics

• Ripe areas:

• Require awareness of word sense

• Benefit from high-coverage features

• Can learn from comparing phrases to single words

Taxonomy/Ontology Induction? Hypernym prediction?

puppy <—> small dog
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Future work:  Integrating lexical semantic knowledge into 
end-to-end models for downstream tasks
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Thank you!



Thank you!

many thanks

hey , thanks

leave a message

keep the change

here you go

why , thank you

anyway , thanks

thank you , frank

bless you

gee , thanks

thank you for your attention
uh , thanks

thank you for your time

thanks , man you look amazing

don't thank me

thank you very much


